

Micro-Nutrients Major Effects

Calaveras Grape Growers Meeting
3 April 2009

Paul S. Verdegaal
Farm Advisor
UCCE San Joaquin Co

Deficiencies Common

Infrequent

Rare

N

P

S

K

Mg

Cu

Zn

Fe

Mo

B

Mn

Ca

Excesses - Toxicity

N

B

Zn

C

Na

Mg (Serpentine)

Nutrient Demand Factors

- Soil
- Previous crop
- Inputs
- Irrigation
- Vineyard Practices
 - » Cultivation
 - » Cover Crops

Fruit Demand of Nutrients

Nitrogen N 2.92

Potassium K 4.94

Phosphorus P 0.56

• Calcium Ca 1.0

Magnesium Mg 0.2

• Zinc Zn = 0.0015 5 TPA = 0.1 oz

• Boron B 0.00065 = 0.05 oz

Actual Deficiency vs Induced

- Variety/Rootstock
- Antagonistic
- Water Quality
- Irrigation
- Soil pH
- Rainfall
- Biological

Lime Induced Chlorosis

Rootstock Tolerance to Calcareous Soils

<u>Rootstock</u>	<u>% Active Lime in Soil</u>
Fercal	50+
41B, 333EM	40
161-49C	25
Kober 5BB, 420A, 140Ru, Borner	20
99R,110R,1103P,SO4	17
St George	14
Ganzin,1202C	13
3309C,1616C	11
4453M	10
101-14	9
Riparia Gloire, Castel 196-17	6
Schwarzmann	Med
Freedom	Med
Ramsey	Med
Dogridge	High

Rootstocks with Zinc Deficiency

- Dogridge
- Ramsey (Salt Creek)
- St. George
- Freedom

Availability of Micro-Nutrients

- Soil Parent Material
- pH
- Texture
 - Clay type and amount
 - O.M.
 - Competition
- Climate
 - Soil Temperature
 - Leaching
 - Weathering
- Soil pH

Soil Types Associated with Micronutrient Deficiencies

Texture/Type	pH < 6	pH 6-7	<u>pH > 7</u>
Sandy	Mo, Cu, Zn	Mn, Cu, Zn	Mn, B, Cu, Zn, Fe
Sandy loam	Mo, Cu, Zn	Mn, B, Cu	Mn, B, Cu, Fe
Loam	Мо	Mn, B	Mn, B, Cu, Fe
Clay Loam	Мо	Mn	Mn, B
Clay Loam	Мо	-	Mn, B
Organic	Cu, Zn	Mn, Zn, Cu	Mn, Zn, Cu

Monitoring Nutrients

- Soil
- Tissue
- Water
- Visual
- Yield History
- Timing
 - -Bloom
 - Veraison
 - Pre-Harvest
 - -Other?

Monitoring

Visual

Tissue Analysis

Visual Symptoms

- Shoot Growth
- Leaves
- Fruit
- Soil

Tissue Analysis

Affected By:

- *Soil Type
- * Rootstock
- Variety
- *Trellis System
- Irrigation
- Time of Season

Tissue Analysis

- Petioles at bloom time
- Petioles at veraison
- Nitrogen monitoring not diagnostic
- Blades are good only if B is a problem
- Labs are all good but vary
- Keep part of dried samples
- No ideal ratios
- = Comparison samples good anytime

Zinc (Zn) & Boron (B)

Shoots – zig zag, short internodes shoot tip death

Leaves – mottled chlorosis

Zn early season young leaves

B later season to fall

Clusters - poor set and "shot berries"

Zinc Deficiency

-Zn Normal

Deficient

Boron

Excessive

Zinc

Small berries, wide range of size & round shape

Boron

Uniformity of small size, flattened pumpkin shape

Confusion from Symptom Overlap

GFLV

Zn deficiency

Chimera

GFLV "Yellow Mosaic"

Application Methods

- Soil
- Irrigation
- Foliar

- Timing
- Formulation
- Organic

<u>Soil</u>

- Effective +
- Cost Efficient +
- Long term +
- Slower -
- Band
- Place near water/active roots
- Formulation
 - Salts ZnSO₄ ZnO
 - Chelates
 - Organic

Irrigation

- Effective +
- Less labor +
- Moderate term +
- Injector or solutionizer
- More management -
- Place near water/active roots
- Band
- Formulation
 - SaltsZnSO₄, Zn(NH₄)PO₄
 - Chelates
 - Mixture

Foliar Spray

- Convenient +
- Fast +
- Short term -
- More expensive -
- Timing important -
- Timing
 - Pre bloom
 - Post harvest
- Formulation
 - Salts
 - Basic
 - Oxides
 - Chelates
 - Organic ?

Foliar Application Factors

- Timing
 - Pre bloom
 - Post harvest
- Concentration dilute better
- Spreader/Sticker
- Weather
 - Temperature
 - Relative Humidity
- Low biuret urea boost
- Formulation
 - Sulfate salt Cheaper ZnSO₄
 - Basic Safer ZnCO₃
 - Oxides Less soluble ZnO
 - Chelates Expensive
 - Organic ? Costly and less effective)

Foliar Spray Summary

• Timing 2-3 weeks

• Formulations Basic, chelates, salts, oxides

Rates
 low concentrations

Conditions Low Temps, High R.H., wind

Materials

•	Solubor	Na2B8O13 · 4H2O	20.5%
•	Borax	Na ₂ B ₄ O ₇ · 10H ₂ O	11
•	Boric Acid	H ₃ BO ₃	17
•	Borate 48	Na ₂ B ₄ O ₇ · 10H ₂ O	14.9
•	Colemanite	Ca ₂ B ₆ O ₁₁ · 5H ₂ O	10
•	Zinc Carbonate	ZnCO ₃	52%
•	Zinc Sulfate	ZnSO ₄	36
•	Zinc Oxide	ZnO	80
•	Zinc Chelates	-	9-14
•	Zinc lignosulfates	-	5-12
•	Zinc polyflavonoids	-	7-20

Zinc Application Methods

	Material	Rate/Acre	Actual/Ac	Timing
Drip	ZnSO4	50-150 lbs	18 – 54 lb	Early
	Zn Chelate	3-9 gal	3 – 13.9	
Soil	ZnSO4	50 -150	18 – 54 lb	Winter/Spring
Foliar	ZnCO3	5 lbs	2.9 lb	PreBloom
	ZnSO4	1 -2 lb	0.4 -0.8 lb	
	Zn chelate	1 -2 gal	0.7 -1.4 lb	

Boron Application Methods

	Material	Rate/Acre	Actual/Ac	Timing
Drip	Solubor	0.5 lb	0.1 lb	Early
	2-4X	1-2 lbs	0.2-0.4 lb	
Soil	Solubor	5 lbs	1.0 lbs	Fall/Winter Broadcast
	maximum	20 lbs	4.0 lbs	per 4 year
	Solubor	5-10 lb	1-2 lbs	Fall/Winter Berm
Foliar	Solubor	1-2 lbs	0.2 -0.4 lb	PreBloom
	<u>.</u>		4.0.11	
	maximum	5 lbs	1.0 lbs	per year

Cost Comparison for Zinc

	<u>Material</u>	Amount/Ac	<u>Actual</u>	Cost \$
Drip	ZnSo4 36%	100 lb	36	50
	Zn EDTA 6.5%	6 gal	4	72
Foliar	ZnCO3 52%	5 lb	2.6	20 *

* Material \$5Application \$15

Other Micro Nutrients

- Fe almost always a pH relatedsoil problem
- Mn similar to zinc, often in poorly drained areas & wet years
- Cu similar to excess boron or nitrogen, rare
- Mo poor set & berry growth, sandy soils, rare
 - Combination formulations helpful for long term, but... \$
- S mimics nitrogen
- Ca serpentine soils, almost exclusively

Phosphorus

Phosphorus Deficiency in California

- New viticultural areas and soil sites
- ✓ Enabled by drip irrigation

Mostly hillsides of north coast and

Sierra Nevada

- Low pH
- High iron

Phosphorus Critical Values

Petiole Levels (% P) Bloom Veraison

Deficient Questionable Adequate Cushion <0.10 0.10-0.15 0. >0.15 >0.20

<0.08 0.08-0.12 >0.12 >0.15

Phosphorus Status and Rootstocks

HIGH	MEDIUM	LOW
110R 1103P Ramsey Freedom	Harmony 5C 5BB 039-16 Schwarzmann	420A 101-14Mgt 3309C

Phosphorus Deficiency Correction

Rates:

0.33 lb. P/vine under drippers, 3 years 0.66 lb. P/vine unnecessary

Materials:

Single or Treble superphosphate Ammonium phosphate

Summary

- Monitoring
 - Observe
 - Keep Records
 - Know soil type (map)
 - Tissue Analysis

petioles at bloom (veraison) - blades B, Na, Cl as diagnostic

- Correction Method
 - Drip
 - Foliar
 - Soil
- Timing
- Formulations
- Rates
 - Dilute concentrations
- Conditions
 - Temperature
 - Relative Humidity
- Winery feedback from juice analysis communication

Happy Harvest 2009

