Pump and Well Efficiency

Blaine Hanson
Department of Land, Air and Water Resources
University of California, Davis

Deep Well Turbine

How do I determine the condition of my pump?

- Answer: Conduct a pumping plant test and evaluate the results using the manufacturer's pump performance data
- ☐ Self-test: may be difficult to do
- ☐ Hire a pumping plant tester

$E_0 = (Q \times H) \div (3960 \times IHP)$

- E_o = overall pumping plant efficiency (wire to water) includes efficiency of electric motor or engine
- Q = flow rate or capacity (gallons per minute)
- H = total head (feet)
- IHP = input horsepower of motor or engine
- 3960 = conversion factor

Total head

- Deep well turbine
 - Pumping lift measured inside the well casing
 - Discharge pressure head = pressure (psi) x 2.31
 - Total head = pumping lift + pressure head
- Booster pump
 - Pressure difference between pump discharge and pump intake
 - Total head = pressure difference x 2.31

Deep well turbine

Pumping Lift

Discharge Pressure

Pump Capacity

Flow rate or capacity measurement

- Flow meter
 - Velocity averaging: less susceptible to errors caused by adverse flow conditions
 - ☐ Propeller meter most common
 - Collins meter
 - Hall meter
 - Point velocity: subject to large errors caused by adverse flow conditions
 - Paddle wheel
- Installation

Point Velocity

Velocity Averaging

Partially closed butterfly valve (685 gpm)

Input horsepower

- Electric motors
 - Power meter
 - ☐ IHP = Kw ÷ 0.746
- Engines
 - Dynamometer (BHP) not practical for growers (requires training)
 - Fuel use
 - \Box IHP = q x K ÷ 2,545
 - q = fuel consumption in gallons per hour
 - □ K = 139,000 for diesel, 125,000 for gasoline, 91,000 for propane, 84,600 for ethanol

Improving overall pumping plant efficiency

- Causes of poor efficiency
 - Mismatched pump
 - ☐ Improperly selected pump
 - Changes in operating conditions
 - Worn pump
 - Surging in well
 - Cascading water in the well
- Methods of improving efficiency
 - Replace improperly selected pump or mismatched pumps with a properly selected pump
 - Worn pumps
 - Impeller adjustment
 - Repair pump
 - Replace pump

Impeller adjustment

Semi-Open Impeller

Enclosed Impeller

Effect of Impeller Adjustment

		Capacity (gpm)	Total Head (feet)	Overall Efficiency (%)	Input Horsepower
Pump 1	Before	605	148	54	42
	After	910	152	71	49
Pump 2	Before	708	181	59	55
	After	789	206	63	65
Pump 3	Before	432	302	54	61
	After	539	323	65	67
Pump 4	Before	616	488	57	133
	After	796	489	68	144

Does an impeller adjustment reduce energy costs?

- Energy costs are based on Kilowatt-hours of energy used
 - Kw is related to IHP
 - ☐ Hours operating time
- Effect of adjustment
 - Increased flow rate
 - Increased pumping lift?
 - Increased IHP
- Energy costs increase because of increased IHP unless pumping time is reduced regardless of how much the efficiency increased
- Primary benefit may be the increased flow rate

Repair worn pump

Effect of Pump Repair

Before

- Pumping lift = 95 feet
- Capacity = 1552 gpm
- IHP = 83
- Efficiency = 45%

After

- Pumping lift = 118 feet
- Capacity = 2008 gpm
- IHP = 89
- Efficiency = 67%

Mismatched pump

- A mismatched pump is operating properly but not at its maximum pump efficiency
- Pump should be replaced with one that provides the same flow rate and head at its maximum efficiency

Replacing a Mismatched Pump

- Pumping plant efficiency will increase
- Input horsepower demand will decrease
- Energy savings will occur because of the reduced horsepower demand

Recommendations for electric pumping plants

- © E_o greater than 60% no corrective action
- ⊕ 55% to 60% consider adjusting impeller
- 50% to 55% consider adjusting impeller; consider repairing or replacing pump if adjustment has no effect
- Less than 50% consider repairing or replacing pump

Effect of pump efficiency and well efficiency

Well efficiency

- Definition: actual specific capacity ÷ optimal or theoretical specific capacity
- Specific capacity = pump capacity ÷ drawdown in the well
- Difficult to estimate the well efficiency

Factors affecting well efficiency

- Well construction
- Well Design
 - Diameter
 - Openings into the well (open area, location)
 - ☐ Gravel pack
- Well development
- Well maintenance

Effect of well design on specific capacity

Source: The Johnson Drillers Journal, 1981

Effect of well development on specific capacity

Source: The Johnson Drillers Journal, 1981

Effect of well maintenance on specific capacity

Let's Eat!