The science of ecosystem services, what we know and need to learn ## How do we assess ecosystem services at global to regional scales? "...because ecosystem services can be difficult to measure directly, scientists have tended to use land use/land cover as a proxy for the provision of services even though the relationships between land use/land cover and service provision are largely untested for most services in most regions of the world." (Bennett et al. 2009) ### Challenges with assessing and managing services - · Quantifying services - Difficult to quantify most services directly - Large-scale estimates often based on assumptions about impacts of land use/ vegetation cover #### Challenges with assessing and managing services - Quantifying services - Large-scale estimates often based on assumptions about impacts of land use/ vegetation cover - These impacts are context- dependent ** challenge is to determine when the rules change - We have the tools to tackle this complexity- use our understanding of local systems to: - Consider interactions between environmental controls and biotic controls - Consider which ecosystem processes are key drivers of a service at your site #### Challenges with assessing and managing services - · Quantifying services - Services difficult to directly measure - Large-scale estimates often based on assumptions about impacts of land use/ vegetation cover - Local estimates often based on measurement of an ecosystem process related to that service #### Can we use ecosystem functions as proxies for services? - We already have a strong understanding of the effects of many vegetation types on ecosystem functions. - Need to carefully select proper functions to consider as proxies based on your system (no "one size fits all" measurement) - Consider how services integrate these component functions over space and time - Consider "compensatory" mechanisms on landscape (e.g. other vegetation that fills in, changes in activity of an organism when another is removed) - Even with these caveats, predictions based on functions are likely to be an improvement over current assessment techniques (particularly when we address points to consider) #### Challenges with assessing and managing services - · Quantifying services - Services difficult to directly measure - Large-scale estimates often based on assumptions about impacts of land use/ vegetation cover - Local estimates often based on measurement of an ecosystem process related to that service - When and where to measure to capture a meaningful estimate of a service? # When to measure: • Variability - Seasonal - Annual • "Hot moments" • Thresholds • Directional shifts over time MEA 2005 #### Challenges with assessing and managing services Quantifying services Services difficult to directly measure Large-scale estimates often based on assumptions about impacts of land use/ vegetation cover - Local estimates often based on measurement of an ecosystem process related to that When and where to measure to capture a meaningful estimate of a service? Carefully consider the system and services to assess: • Heterogeneity across time Heterogeneity within vegetation type Heterogeneity across landscape Scale at which services are regulated • Location at which services are needed (e.g. flood prevention may be a service near a city, flooding may be needed to maintain riparian and wetland buffer strips for water quality) Can we take measures from one place/time/condition and extrapolate to others? Cheatgrass can increase or decrease N cycling rates, depending on site Ehrenfeld 2003 http://www.imapinvasives.org/GIST/ESA/photos/brote02.jpg #### Challenges with assessing and managing services - Quantifying services - Services difficult to directly measure - Large-scale estimates often based on assumptions about impacts of land use/ vegetation cover - Local estimates often based on measurement of an ecosystem process related to that service - When and where to measure to capture a meaningful estimate of a service? - Can we take measures from one place/time/condition and extrapolate to others? | Ecosystem processes that impact water supply | | |--|--------| | Fog and cloud interception and evaporation | tiand | | Braumann et a | l 2007 | | Underlying
ecosystem
functions | Key
environmental
factors | Spatial
scale | Traits of species that act as "key providers" | Abundance
for trait
impact | Time for impact | Other key
interactors | | |--|---------------------------------|--|---|----------------------------------|--|--|--| | Water holding
capacity (SOM, pore
space) | Soil
Climate
Topography | Local | Tissue chemistry,
biomass, root structure | Proportional
to high | Moderate to long | Soil
invertebrate
Herbivores
Soil microbe | | | Evapotranspiration | Soil
Climate | Local to
regional | Water use efficiency,
biomass, leaf area,
rooting depth in relation
to water sources | Proportional
to high | Short to moderate | Herbivores | | | Infiltration vs. runoff - compaction - vegetation cover - soil aggregation - soil pore space Water flow path (e.g. channelization) | | Root structure
Root turnover
Canopy structure
Root exudates | Low to High | Short to
moderate | Soil
invertebrate
Herbivores
Soil microbe | | | Natural history and management knowledge of the system, coupled with suite of factors guide us in: - -Measurements - -Predictions based on current data available - -New conceptual frameworks based on new data collected | Ecosystem
service | Underlying ecosystem functions | Key
environmental
factors | Spatial scale | Traits of species that act
as "key providers" | Abundance
for trait
impact | Time for impact | Other key
interactors | |-------------------------|--|---|--|--|--|---|---| | Water quality | Nutrient sequestration
Nutrient cycling
Nutrient leaching
Detoxification
Erosion control
- vegetation cover
- water runoff vs.
infiltration
- soil cohesion
- soil layers | Soil
Climate
Topography | Local to
regional
(depends on
water &
solute flow)
Heterogenei
ty can have
large
impacts | Tissue chemistry,
exudation, biomass
(especially root) Tolerance+ sequestration
or ability to chemically
convert Root structure, canopy
structure, | Low to
high Low to
proportion
al
Proportion
al to high | Short to long
short to
moderate
Short to long | Soil
microbes
Soil
invertebrate
s
Herbivores | | Carbon
sequestration | Organic matter
formation/
accumulation (inputs,
turnover,
transformation of C
forms) | Climate
Soils
Topography | Local to
global | High root allocation
Tissue quality
Rooting depth
Exudation | Low to
high | Moderate to
long | Soil
microbes
Herbivores | | Climate
regulation | Greenhouse gas
emission
Latent vs. sensible
heat flux
Albedo | Climate
Soils
Transport
Topography | Local to
global | Reflectance
Canopy structure
Vegetation cover
Evapotranspiration
Rooting depth | Low to
high
Proportion
al? | Short to long
Short to
moderate
Short to
moderate | Herbivores
Soil
microbes | | Soil fertility | Organic matter
accumulation
Nutrient recycling
Nutrient
sequestration
Erosion control
Nutrient inputs | Climate
Soils
Topography | Local to regional | Tissue chemistry Tissue allocation Biomass Exudation Canopy & root structure | Low to
high | Short to long | Soil
microbes
Soil
invertebrate
s
Herbivores | #### Challenges with assessing and managing services - Quantifying services - Services difficult to directly measure - Large-scale estimates often based on assumptions about impacts of land use/ vegetation cover - Local estimates often based on measurement of an ecosystem process related to that service - When and where to measure to capture a meaningful estimate of a service? - Can we take measures from one place/time/condition and extrapolate to others?