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Percolation and finite-size scaling properties in three-dimensional binary correlated Markov-chain random
fields on a cubic lattice are computed by extensive Monte Carlo simulation. At short correlation scales, the
percolation threshold in correlated random fields decreases as the correlation scale increases. The rate of
decrease rapidly diminishes for correlation lengths larger than 2-3 lattice sites. At correlation scales of 4-6
lattice sites, the percolation threshold is found to be 0.126+0.001 for the Markov chain random fields, similar
to that for sequential Gaussian and indicator random fields, which are evaluated for comparison. The average
percolation threshold in finite-size lattices is a function of both, the correlation length and the finite lattice size.
The universal scaling constants for mean cluster size and backbone fraction are found to be consistent with
results on uncorrelated lattices. But prefactors of scaling relationships vary with correlation length. The
squared radius of gyration of nonpercolating clusters is found to scale with /v and its scaling prefactors are
independent of the correlation scale. Prefactors are similar between the three random field generators evalu-
ated. The percolation properties derived here are useful to account for finite-size effects on percolation in

natural or manmade correlated systems.
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INTRODUCTION

Percolation phenomena in random (disordered) media
have been extensively studied in a wide variety of fields
including physics, chemistry, engineering, and life, earth, and
environmental sciences [1]. Emphasis has been given to per-
colation properties of uncorrelated random media. For uncor-
related systems, percolation thresholds and critical behaviors
near the percolation thresholds are well known [2]. Less at-
tention has been given to percolation properties of media
with short- or long-range correlations [3-5], particularly in
three-dimensional systems [6,7]. Yet, three-dimensional spa-
tial correlations within the disorder of random media are in-
trinsic to most natural systems and also to many artificial
(manmade) systems.

The critical behavior in media with short-range correla-
tions is thought to be identical to that in uncorrelated systems
[4,8]. However, the percolation threshold p,., which is 0.3116
in uncorrelated three-dimensional cubic lattice media [2], has
been observed to vary with the correlation scale N and also
with the system type (lattice type, random field type). There
is no universal three-dimensional percolation threshold for
correlated, infinite random media systems, although it is gen-
erally known that correlations reduce the percolation thresh-
old [1,9-11] and affect prefactors in scaling laws. For long-
range correlations and in small finite-size systems, the
scaling exponents themselves can be different from those of
uncorrelated lattices [4,5].

Disordered media with a finite length scale (spatial extent)
L and with short-range correlations characterized by a finite
correlation scale A are intrinsically finite with respect to the
amount of structure observed within the medium (unless it is
hierarchical or fractal). Unlike in media with uncorrelated
structures, finite-size effects may therefore play a significant
role in many natural or engineered disordered, correlated
systems [12,13].
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In finite-sized random binary systems, the occurrence of
percolation is associated with a probability II, which con-
tinuously varies with the fraction p; of “occupied” or “con-
ductive” sites. The value of p; for which the probability of
percolation is 50% is sometimes referred to as the finite-
sized percolation threshold or, more commonly, the average
percolation threshold p,,. In general, p,,>p. and p,,— p.
for L— . The average percolation threshold p,, depends not
only on the lattice size L. It has recently been pointed out
that p,, of three-dimensional finite-sized systems decreases
with increasing correlation scale N [14—16], although these
efforts were inconclusive and based on either a very small
number of Monte Carlo realizations or based on relatively
small lattice sizes or both.

The purpose of this paper is to further characterize the
percolation behavior of finite-sized binary random fields on
cubic lattices using Monte Carlo simulations with a suffi-
ciently large number of realizations and relatively large lat-
tices (up to 2013). The paper explores the specific percolation
properties of Markov-chain random fields (see below).
Markov-chain random fields are typically used, e.g., to rep-
resent heterogeneous geologic media [17,18]. Here, I am
specifically interested (1) to determine whether p,,(\) of the
Markov-chain fields is similar to that of Gaussian random
fields; (2) to identify the approximate shape of II as a func-
tion of \; and (3) to analyze the finite-sized behavior of the
backbone fraction of the percolating cluster P, the mean
cluster size S, and the connectivity length or cluster radius of
gyration &, near p,, as a function of \. In infinite systems,
these are known to scale according to

P.~p-p/*, (1)

S~Ilp-pl7, (2)
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E~lp-p|™. 3)

where the so-called critical exponents 8, y, and v are univer-
sal constants. For uncorrelated infinite three-dimensional
systems, the exponents are known to be 0.41, 1.8, and 0.88,
respectively. It has been postulated that these exponents are
independent of the lattice type or the correlation scale, if the
latter is short ranged [4]. In finite-sized systems, knowledge
of the prefactors (proportionality constants) in the above re-
lationships is of importance and I present these as functions
of the correlation scale.

MONTE CARLO SIMULATIONS

Correlated binary random fields Z on a simple cubic lat-
tice are generated using a first-order Markov-chain model.
First-order Markov-chain random fields are defined by the
proportion p; of each phase w; and the stationary transition
probability ¢;(hg) in each of three directions ® spanning a
three-dimensional space ® e{1,2,3}. The transition prob-
ability is defined as

tixhg) = P(Z(x + hg) = 03| Z(x) = w))  for all x,(x + hg)
e Q. (4)

P( | ) is a conditional probability, kg is a separation vector in
the direction ®,Z(x) is the random phase at location x, and
Q) is the finite-size three-dimensional simulation domain
[19]. Transition probabilities are a function of the mean
length Ag; of phase w; such that

Agj=-[0t;j(0)/dhg]™". (5)

Three-dimensional random fields are generated by first com-
puting the Markov-chain transition rate matrices in the three
principal lattice dimensions from the transition probability
matrices, and then applying ellipsoidal interpolation to com-
pute transition probabilities in any arbitrary direction during
the sequential simulation step. The random field realization
is optimized by simulated quenching to achieve a close fit of
the sample statistics to the desired transition probability sta-
tistics [20].

In binary media [Z(x) € {0,1}], the first order Markov-
chain random field exhibits an exponential covariance [21]:

(Z(x)Z(x +h)) = p,(1 = p )exp(|h|/\) (6)

where N=[(1-p;)Ag ] is the correlation length of Z. When
the latter equation is used in conjunction with kriging analy-
sis to generate realizations of a binary random field (rather
than using the transition probabilities), the method is referred
to as indicator simulation [22].

The transition probability Markov-chain (TPMC) random
field generator [20] was used for Monte Carlo simulation of
three-dimensional isotropic binary random fields on a simple
cubic lattice with identical lattice size L in all three dimen-
sions. Simulations were performed for L
e{11,21,51,101,201}. For each lattice size, uncorrelated
random fields (using a uniform random number generator)
and correlated random fields (using the TPMC method) with
isotropic omnidirectional mean lengths A; e {1,2,4,6} are
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generated at various p;. The nondimensional A, is the mean
length normalized by the distance between neighboring sites
on a cubic lattice. For comparison, a subset of these simula-
tions was repeated using the sequential Gaussian and sequen-
tial indicator simulation algorithms [22].

All simulations were initially performed with a
low number of realizations for each of p{**
€4{0.100,0.101,0.102,...,0.399,0.400} to determine the ap-
proximate location of p,,, then a large number of realizations
were performed for various p}"”"' near the approximate p,,,, to
obtain accurate estimates of p,, and the percolation proper-
ties at p,,. The number of increments in p'"*" at which
Monte Carlo simulations were performed and the number of
realizations per Monte Carlo simulation varied depending on
the lattice size and mean length (Table I). Larger lattice size
and mean lengths required a lower number of realizations to
obtain similarly accurate results, but both also increased
computational cost.

Percolation properties on each realization were analyzed
using the Hoshen-Koppelman algorithm [2,23]. This in-
cluded a check for the occurrence of percolation, the back-
bone fraction of the percolation cluster P, (if it existed), the
mean nonspanning cluster size S, and the mean connectivity
length &. For individual realizations, these were computed
from [23]

POO = Sw/pl s (7)
§=(sM)/s), (8)
&=%-(x)?, )

where s, is the number of sites in the spanning cluster, s is
the number of occupied sites in an individual nonspanning
cluster, x is the position vector of individual lattice points in
the largest nonspanning cluster, and ( ) indicates the expected
value (arithmetic average) over all nonpercolating clusters
(to compute S) or over all cluster sites in the largest nonspan-
ning cluster (to compute £).

Measures of the first two central moments of dI1/dp,,p,,,
and A were computed by first solving

PalL) =117(0.5,L), (10)
and then by determining the slope of II at p,,:

The latter measure, A(L), is a representative measure of the
range of p; over which there is significant uncertainty about
the existence of a spanning cluster in a given realization, in
other words, the range over which the probability for perco-
lation is significantly different from O or 1. The two moments
can be applied to approximate I1(L) at any arbitrary L and
A, by using a Gaussian cumulative distribution function
[24,25] G, with mean p,,(L) and variance {27A%(L)}:

(L) = G(p,(L),2mA%(L)). (12)

The percolation threshold, p., for an infinite system is ob-
tained by fitting the data to the finite-size scaling equation

[2]:
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TABLE I. Setup of the numerical simulations. “RF method” refers to the random field generator used (U,
uniform random number generator; TPMC, transition probablity/Markov-chain generator; SI, sequential in-
dicator generator; SG, sequential Gaussian generator with subsequent indicator cutoff conversion at that pth
level of the cumulative probability distribution). For U, the column “Realizations” indicates the total number
of realizations for which the percolation threshold was determined by varying the cutoff threshold p;.

RF Domain Mean Increment Realizations Lowest Highest
method length length of p; (per increment) P1 D1

6] 5 100000 Iterative

U 11 50000

U 25 20000

U 51 10000

U 101 5000

TPMC 11 1 0.002 25000 0.210 0.260
TPMC 21 1 0.002 10000 0.180 0.240
TPMC 51 1 0.001 5000 0.180 0.195
TPMC 101 1 0.001 5000 0.179 0.183
TPMC 11 2 0.002 25000 0.190 0.298
TPMC 21 2 0.002 10000 0.166 0.220
TPMC 51 2 0.001 3000 0.153 0.166
TPMC 101 2 0.001 2000 0.146 0.149
TPMC 11 4 0.001 20000 0.202 0.239
TPMC 21 4 0.001 10000 0.175 0.215
TPMC 51 4 0.001 1000 0.140 0.169
TPMC 101 4 0.001 2000 0.139 0.141
TPMC 201 4 0.001 100 0.131 0.145
TPMC 21 6 0.002 10000 0.180 0.236
TPMC 51 6 0.001 500 0.140 0.200
TPMC 101 6 0.001 500 0.140 0.154
TPMC 201 6 0.001 100 0.130 0.140
SI 51 4 0.001 1000 0.225 0.253
SI 101 4 0.001 300 0.186 0.206
SI 151 4 0.001 300 0.170 0.185
SG 51 10 0.001 1000 0.275 0.295
SG 101 10 0.001 300 0.200 0.238
SG 151 10 0.001 300 0.185 0.196

PaL) =p. ~ A(L). (13) RESULTS

The application of the universal scaling constants v, 8, and y
to Markov-chain random fields was tested by fitting the
prefactors of the general scaling law for finite lattices to the
simulation data using known values for the scaling constants
(0.88, 0.41, 1.8, respectively):

Pall)=pe~ L7 or A(L)~L7', (14)
(Pou(pan(L),L)) ~ L, (15)
(S(pay(L),L)) ~ L7, (16)
(Epa(L).L)) ~ L7, (17)

Percolation threshold p, of infinite uncorrelated
and correlated systems

For the infinite lattice, finite-size scaling analysis of per-
colation in uncorrelated lattices yielded the percolation
threshold to within 0.0005 of the known value and the expo-
nent to within 5% of the known value: The fixed-v method
[Eq. (14)] yielded p.=0.312 while the variance method [Eq.
(13)] yielded p.=0.3116 with v estimated at 0.92. In corre-
lated lattices, the computed percolation threshold at A ;=1 is
significantly lower than in the uncorrelated lattice and de-
creases with increasing A ;. The rate of decrease rapidly di-
minishes for A;>2. At A;=6,p, is 12.6% (= 0.1%). This
value is slightly higher than the 10.6%, 9.2%, and 9.4% es-
timated by Mendelson [16] for correlated random fields with
Gaussian, exponential, and Laplace-Gaussian covariance
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FIG. 1. Average percolation threshold p,, as a function of mean
length A, for various lattice sizes L (symbols). Lines represented
fitted functions from Eq. (17)).

functions, respectively, using the fixed-» method with rela-
tively small L=16, 32, and 64, and based on only ten real-
izations.

Finite-sized average percolation thresholds p,,,,

Figure 1 shows estimates of p,. and p,, as a function of
mean length A, at various lattice sizes L. In all cases, the
95% confidence interval for p,, is less than 0.001 (not
shown). Due to the finite-size scaling property [Eq. (14)],
smaller lattices yield larger values for p,,. At short mean
lengths (A <2) both the derived percolation threshold p, for
the infinitely sized domain and p,, of the finite-sized do-
mains decrease rapidly with increasing A ;. The range of A,
over which the initial decrease of p,,(A;) occurs is limited to
the interval 0=<A ;=<4 and is largely independent of the lat-
tice size. This can be confirmed by fitting a modified Gauss-
ian function to the measured data in Fig. 1 (modified from
Mendelson [16]):

p[lV(L?Al) =paV(L’A1 = Al,min) + [paV(L’O)
_puV(L’Al = Al,min)]exp{_ a(L)Alz} (18)

where A, is the mean length at which the lowest value of
Pay is observed, and «(L) is the slope parameter of
PalL,A,). Originally suggested to vary with L, I find that
a=1.5 is a reasonably close estimate for any L, indicating
that the rate of initial decrease of p,, is strongly controlled
by the lattice correlation, not by the lattice size. The ob-
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FIG. 2. Average percolation threshold p,, as a function of the
logarithm of normalized mean length A /L for various lattice sizes.
Lines are graphically fitted. The thick line represents an approxi-
mate lower boundary of p,, for large lattices.

served slope « is slightly higher than that estimated by Men-
delson [16] for a Crossley-Schwartz-Banavar random field
[26] or that obtained after fitting Eq. (18) to the three-
dimensional (3D) results reported by Renault [15] for spec-
tral random fields with exponential covariances.

The above equation is valid only at small A;. At larger
A, the percolation threshold function p,,(A,) of finite lat-
tices does not asymptotically reach a minimum value but
increases again after reaching a local minimum near A ,;,
=2 or Ay,;,=4 (Fig. 1). Similar increases in p,,(A;) at
larger A can be observed in the 3D finite-scale simulation
results of Renault [15] (L=50) and Mendelson [16] (L
€{16,32,64}). This previously unnoticed behavior is a re-
sult of the decrease in the relative finite lattice size L/ A as
A, — L. In correlated lattices, the finite-size effects are there-
fore a function of both L and A, (or, equivalently, L and \).
When plotted against the relative mean length A,/L, the ap-
parent location of A, /L varies for different L (Fig. 2). The
average percolation threshold is affected at levels of A/L as
low as 0.05, even in very large but finite lattices (thick line in
Fig. 2).

Second moment of Il

Any measure A of the spread of the distribution function
I1(p,) is known to scale with L™""". For correlated lattices, it
is thought that the value of v, and hence the change of
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FIG. 3. Finite-size scaling of A for various mean length A; using the TPMC random field generator (a) and with various random field
generators at A;=4 (b). Symbols represent empirical results, lines represent best fit to Eq. (13) with v=0.88.

log;o(A) with log;o(L), is independent of the correlation or
mean length [1,2]. Exact estimates of v by fitting Eq. (14) to
measurements of A are difficult to obtain via Monte Carlo
simulation without a very large number or realizations.
While I generated on the order of 10* realizations for smaller
lattice sizes, the number of realizations for L=101, 201 was
limited to a few hundred to a few thousand. Given the lim-
ited accuracy, the results for all A; seem to reasonably fit the
scaling value v=0.88 [Fig. 3(a)]. Fits are less accurate for
A;=1, 2. This may be a limitation of the specific Markov-
chain random field generator with the simulated quenching
algorithm indicating that it does not perform as accurately at
A, <4 as other binary random field generators.

While v does not significantly change with A, the mag-
nitude of A at a given lattice size significantly increases with
A, (Table II). In other words, the spread of II increases with
the mean length of the lattice correlation. The observed in-
crease of A with A, relative to uncorrelated lattices, is
shown to be of similar magnitude for TPMC random fields,
sequential indicator random fields, sequential Gaussian ran-
dom fields, and spectral (turning bands) random fields [15],
the latter two of which were converted to indicator random
fields prior to the percolation analysis by applying p; as a
cutoff [Fig. 3(b)].

Backbone, cluster size, and connectivity

The scaling behavior of the backbone fraction S, in cor-
related TPMC fields, computed at p,,(A,), is consistent with

that in uncorrelated random fields, for which 8 was found to
be 0.41 [Fig. 4(a)]. Like the spread of II, the backbone frac-
tion S, increases with mean length of the lattice correlations.
The increase of the backbone fraction decelerates with in-
crease in A; [Fig. 4(a)]. For A;=4 and 6, backbone fractions
at L=11 and 21, respectively, are significantly lower than
expected by the scaling law indicating that the TPMC algo-
rithm is not sufficiently accurate when simulating a lattice
that is small relative to the mean length of the lattice corre-
lations.

Mean cluster size (S) and measures of (£) for nonspan-
ning clusters also fit known finite-size scaling relations [Egs.
(15) and (16)]. Like p,,, A, and S.,, the mean cluster size of
nonspanning clusters depends on A;: longer spatial correla-
tions increase the mean cluster size [Fig. 4(b)].

In contrast, the squared radius of gyration of nonspanning
clusters does not depend on mean lengths (Fig. 5). The
squared radii of gyration of nonpercolating clusters at given
lattice size are nearly identical for all A, e{1,2,4,6}. For
the average squared radius of gyration of the largest 30 non-
spanning clusters I obtain the following scaling relationship,
regardless of mean length or correlation scale of the random
field:

log (€% == 2.0+ (y/v)log(L). (19)
For the largest nonspanning cluster, the radius of gyration is
always

TABLE II. Prefactors for the scaling relationships (14)—(17) of A, S.., (S), and & at p,, (Fig. 6) as a
function of the scaled mean length A,. Prefactors a apply to the log;,-transformed scaling equation

log,o(Y)=a+(b/v)log;o(L), of Egs. (14)—(17).

A, log;pA logo(Sinp) log (S 4 logo(&%) 102 10(&max)
0 -0.265 -0.02 -0.9 -2 -1.15

1 0.43 0.19 -0.6 -2 -1.15

2 0.51 0.38 -0.35 -2 -1.15

4 0.73 0.55 -0.02 -2 -1.15

6 1.08 0.63 0.15 -2 -1.15
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FIG. 4. Finite-size scaling of the infinite cluster (a) and of the average nonpercolating cluster size (b) at various mean length A . Symbols
represent empirical results, lines represent best fit to Eq. (14) (a) and Eq. (15) (b) with v=0.88, 8=0.41, and y=1.8.

10g10<§mux2> =-115+ (’y/V)IOgIO(L)’ (20)

where y=1.8,v=0.88. Moreover, these radii very closely
matched those obtained from sequential indicator and
Gaussian-derived indicator random fields (Fig. 5). Note that
the sample moments for & and &,,,,> were computed regard-

logio{&pax’) == 1.0 + (y/v)log (L)

logio{&par’y == 1.3 + (y/v)log;o(L)

less of the existence of a spanning cluster in a given realiza-
tion. At p,,, where half the simulations have spanning clus-
ters, the mean squared radius of gyration of the largest
nonspanning clusters in nonpercolating realizations is found
to be always 10°3 times larger than that in realizations with a
spanning cluster:

Equivalently, the mean radius of gyration of the largest nonspanning clusters is found to be

10g10<§max> =-0.54+1.05 IOgIQ(L)

10g10<§max> =-0.74+1.05 10g10(L)

For the mean radius, the slope is slightly larger than the
theoretically expected unit slope [v/ v, Eq. (17)]. Similar dif-
ferences between percolating vs nonpercolating realizations
are observed for (S).

Prefactors of the scaling functions (Table II) increase with
Ay, i.e., with the relative discretization of the correlated
structures in a heterogeneous medium. It appears that the
prefactors of the scaling functions for S, and (S) reach an
asymptotic value at some A, >6 (Fig. 6).

DISCUSSION AND CONCLUSION

Our results provide closure to and expand upon the obser-
vations by Silliman et al. [14], Renault [15], and Mendelson
[16], the first two of which were inspired by the common
application of numerical methods to the study of (three-
dimensional) physical phenomena in correlated random me-
dia, specifically the simulation of flow and transport pro-

if no spanning cluster exists, (21)
if a spanning cluster exists. (22)
if no spanning cluster exists, (23)
if a spanning cluster exists. (24)

cesses in permeable geologic media. In the stochastic
analysis of effective properties of such media, much atten-
tion has been given to the role of statistical properties of
random media, particularly spatial two-point statistics or
geostatistics, to the simulation of such random media given
specific low-order statistical properties [22], and to the effec-
tive flow and transport properties of such media [12,27].
While it is well known that such effective, large-scale prop-
erties are highly dependent on the percolation properties of
random media, comparatively little research has been di-
rected toward quantifying such finite-size percolation effects
in three-dimensional systems.

The results presented here illustrate the importance of
properly discretizing observed heterogeneity with short-
range correlations in numerical modeling of percolation-
dependent processes in heterogeneous media: if the grid dis-
cretization is too coarse (A;<4), the simulated percolation
threshold is higher than that of the actual heterogeneous me-
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FIG. 5. Finite-size scaling of the mean squared radius of gyra-
tion as a function of mean length A; and random field generator
(same symbols as in Fig. 4). Lines represent the scaling relationship
(19).

dia. Similarly, if the simulated domain is too small relative to
the mean length or correlation length (A;/L>0.05), the
simulated percolation threshold may also be higher than in
the actual finite-sized medium (if the simulated domain rep-
resents only a subdomain of the actual finite-sized medium).

Numerical studies of disordered media processes (e.g., by
the finite difference method [12]) are typically based on lat-
tices with 10°-10° nodes if implemented in three dimen-
sions, yielding typical lattice lengths L on the order of 10"
to 102. With minimum discretization requirements being
such that A ;=4 [13,27], the relative lattice size L/ A, or L/\
of the simulated domain is typically limited to 10-30. For
numerical studies of disordered media processes, it is there-
fore critical to take into account finite-size effects on perco-
lation and on the associated phase connectivity properties of
lattices. Note that if relative domain size or relative discreti-
zation is chosen differently for different directions in a mul-
tidimensional simulation domain, the results may show an
apparent anisotropy due to the different magnitude of finite-
size and discretization effects on percolation in different di-
rections. To avoid such effects, both relative discretization
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FIG. 6. Prefactors (zero intersects) obtained from the fits to the
finite-size scaling relationships shown in Figs. 3-5.

and relative domain size should be identical in all directions
or large enough to avoid discretization and size effects.
Like other random fields with short-range correlations, the
results confirm that Markov-chain random fields belong in
the same universality class as uncorrelated random fields. At
12.6%, the theoretical percolation threshold p,. for an infinite
lattice is similarly low as that found for other random fields
with short-range correlations. In heterogeneous media with
relative finite system lengths L/A | of less than 20, the aver-
age percolation threshold p,, is higher and increases with
decreasing heterogeneous media dimension L/A . For spe-
cific numerical applications on finite-sized, correlated grids
representing cubic lattices, Table II in conjunction with Eq.
(12) and the scaling functions (13)—(17), (19), and (20) yield
reasonable estimates of I at any p, and of S..,(S), and & at
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