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Effective conductivity of periodic media with cuboid inclusions
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Abstract

This paper presents a numerical solution for the effective conductivity of a periodic binary medium with cuboid inclusions located

on an octahedral lattice. The problem is defined by five dimensionless geometric parameters and one dimensionless conductivity

contrast parameter. The effective conductivity is determined by considering the flow through the ‘‘elementary flow domain’’

(EFD), which is an octant of the unitary domain of the periodic media. We derive practical bounds of interest for the six-dimen-

sional parameter space of the EFD and numerically compute solutions at regular intervals throughout the entire bounded parameter

space. A continuous solution of the effective conductivity within the limits of the simulated parameter space is then obtained via

interpolation of the numerical results. Comparison to effective conductivities derived for random heterogeneous media demonstrate

similarities and differences in the behavior of the effective conductivity in regular periodic (low entropy) vs. random (high entropy)

media. The results define the low entropy bounds of effective conductivity in natural media, which is neither completely random nor

completely periodic, over a large range of structural geometries. For aniso-probable inclusion spacing, the absolute bounds of Keff
for isotropic inclusions are the Wiener bounds, not the Hashin-Shtrikman bounds. For isotropic inclusion and isoprobable condi-

tions well below the percolation threshold, the results are in agreement with the self-consistent approach. For anisotropic cuboid

inclusions, or at relatively close spacing in at least one direction (p > 0.2) (aniso-probable conditions), the effective conductivity

of the periodic media is significantly different from that found in anisotropic random binary or Gaussian media.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Effective properties of patterned or structured media

have been the topic of many research branches in phys-

ics, engineering, and chemistry. An excellent historic re-

view on this so-called ‘‘homogenization quest’’ in several

fields of science is provided by Markov [33]. Other re-

cent reviews on the topic are presented by Torquato
[53] and Milton [39]. In the exploration of geofluids

(groundwater, oil, gas), patterns and structures in the

distribution of subsurface rock and in sediment proper-

ties provide the framework for understanding the move-

ment of fluids and gases in a naturally heterogeneous

environment [2,10]. Patterns relevant to subsurface flow
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and transport can be recognized at many different scales

forming a natural hierarchy [13,10] or a ‘‘scaleway’’ [54],

which also gives rise to fractal patterns (e.g.

[58,40,41,9,51]). Most hydrogeological studies focus on

a specific portion of this scaleway and consider essen-

tially two scales: the micro-scale, also referred to as

the local scale [14], at which constitutive physical rela-

tionships are considered valid, and a macro-scale for
which we seek to derive effective properties [34].

Structures in such media can be divided into two ma-

jor groups: regular patterns and random patterns (Fig.

1). The (geo)statistical characteristics and effective prop-

erties of media with random patterns have been the

subject of much research work in subsurface hydrody-

namics (geostatistics of continuous variables, indicator

geostatistics, stochastic continuum theory in subsurface
hydrology and petroleum engineering, see, e.g., [29,14,

15,23]). In hydrogeology and related fields, less attention
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Fig. 1. Various periodic patterns in 2D: rectangular inclusions of identical size (a), square inclusions of different size (b), multiple inclusions of

different size and shape (c), a realization of a stochastic ‘‘random’’ field arranged into a periodic pattern (d).
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has been given to deterministic regular patterns, partly

because strict regular patterns rarely occur in geologic
environments. Yet, regular patterns are attractive study

objects because they provide a simplified but justifia-

ble conceptual representation that captures many sali-

ent features of random patterns [59]. Furthermore,

results obtained with regular patterns can be very use-

ful benchmarks against which approximate analytical

and numerical methods as well as field results can be

tested.
Regular patterns, usually referred to as periodic med-

ia within the context of homogenization [34], are defined

by a ‘‘unitary domain’’ [46] or ‘‘unit cell’’ [28] that is re-

peated in space. The concept of periodic media is equiv-

alent to that of stationarity (statistical homogeneity) in

random media [33]. Because of its periodic nature, some

effective properties of the macro-domain can be ob-

tained by studying a single unitary domain with a simple
pattern. Binary (two-phase) patterns with cuboid, spher-

ical, or ellipsoidal inclusions (rectangles, circles, or el-

lipses in 2D) embedded in a homogeneous background

(matrix) are perhaps the most universal and have there-

fore been studied most extensively.

The study of effective properties of media with circu-

lar (2D) and spherical inclusions (3D) dates back more

than a century [36], but is still relevant (e.g.
[63,44,16,6,21]). The use of elliptical (2D) or ellipsoidal

(3D) inclusions leads to a slightly less attractive but still

solvable mathematical problem (e.g. [38,37,45,32]). The
use of elliptical or ellipsoidal inclusions allow for the

extension to anisotropic materials. Another type of
anisotropic materials contain rectangular (2D) or cubo-

idal (3D) inclusions. Mathematically, this problem is

considerably more involved (e.g. [43]). Effective proper-

ties of media with cubed, touching and non-touching

inclusions distributed on a cubic lattice have among oth-

ers recently been studied by Nozad et al. [42], Hsu et al.

[27], Fisher and Stroud [22], Obsonov [43], and Fel and

Kaganov [21]. Analytical models of effective conductiv-
ity in media with (2D-) rectangular inclusions arranged

on a checkerboard lattice were developed by Ke-da

et al. [30] and by Hui and Ke-da [26]. The specific case

of touching squares in a checkerboad has been dis-

cussed, e.g., by Dykhne [20] and Yeo and Zimmerman

[62].

Besides the determination of exact properties of peri-

odic patterns, the analysis of flow around and through
single inclusions have also lead to widely used formulas

for effective properties of composite media containing

many inclusions. These formulas are in many cases exact

for periodic patterns, but are still useful approximations

for statistically homogeneous irregular patterns. Exam-

ples of such upscaling formulas are the Maxwell approx-

imation, which is valid for low inclusion concentrations,

and the various effective medium theory approximations
of which the self-consistent approximation is perhaps

the best known in hydrogeology (e.g. [11,12,14,45]).

The composite spheres assemblage, introduced by Ha-
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shin and Shtrikman [25], also allows for the deduction of

bounds on effective properties. It was extended to aniso-

tropic composites by Milton [38]. Regular patterns of

packed bed spheres have been used as an approximation

of random media for the derivation of the classic clean-

bed colloid filtration model [61]. An exhaustive review of
upscaling methods used in hydrogeology can be found

in Renard and de Marsily [46].

In this paper, we determine the effective conductivity

of binary periodic media with isotropic and anisotropic

cuboid inclusions distributed on an octahedral lattice.

This particular pattern has not been previously investi-

gated, but is particularly attractive to hydrogeology

due to the alternating positions of individual inclusions,
which can form interlacing, non-touching patterns that

are not uncommonly observed in natural media.

Determining the effective conductivity is a two-step

process, which includes (1) a description of the constitu-

tive dimensionless geometry of the unitary domain

(equivalent to the geostatistical model in stochastic anal-

ysis), which we will show to include five independent

parameters; and (2) a derivation of the effective conduc-
tivity. Here, we apply a conceptually simple ‘‘brute

force’’ approach to numerically derive a general solution

for the effective conductivity: We compute accurate

numerical solutions for a broad range of values within

the five-dimensional parametric space of the constitutive

geometry and for a large range of conductivity contrasts

between the two media phases. Approximate solutions

throughout the continuous dimensionless parametric
range are then computed by computationally inexpen-

sive non-linear interpolation. We present significant re-

sults and compare the solution to effective conductivity

estimates obtained for random heterogeneous porous

media with binary and log-normal conductivity distribu-

tion and to those obtained from the self-consistent

approach.
2. Methods

We refer to the isolated, mutually disconnected inclu-

sions as the x-phase or simply as ‘‘inclusions’’ and to the
continuous, completely connected background phase as

the g-phase [59] or simply the ‘‘matrix’’. The binary
medium represents the distribution of two different flow
phases with conductivities Kg and Kx for which we seek

to determine the effective conductivity under steady-

state flow conditions. The constitutive equation applica-

ble at the micro-scale (e.g., the representative elementary

volume scale, [2]) is:

»K»h ¼ 0 ð1Þ

subject to Xh and Xq, where K is the isotropic local con-

ductivity, K(x2Xg) = Kg, K(x2Xx) = Kx, h is the

hydraulic head or total potential, Xg is the matrix do-
main, Xx is the domain of the inclusions, and Xh, Xq

are constant head and constant flux boundary condi-

tions, respectively, at the boundary of the macro-do-

main. This is the conductivity equation of composite

materials, which applies equivalently to electrical con-

duction, thermal conduction, diffusion, dielectrics, mag-
netism, and antiplane elasticity [39]. To emphasize the

applicability of our results to other fields, we refer to

K simply as conductivity (not specifically as hydraulic

conductivity).

2.1. The geometry of simple patterns in a macroscopically

uniform flow field

We consider flow in binary periodic media with iden-

tically sized cuboid inclusions driven by a pressure gra-

dient parallel to one of the cuboid axes. The inclusion

centroids are distributed on an octahedral lattice, which

we consider as an extension of the more common appli-

cations of a parallelepiped lattice and the equivalent 2D

lattices, namely the diamond (checkerboard) and rectan-

gular lattices, respectively (e.g., [19,60]).
The concept of the unitary domain is illustrated in

Figs. 2 (2D) and 3 (3D). Due to symmetry considera-

tions, the entire flow field through the unitary domain

can be obtained by mirror-imaging the flow field from

any one of the unitary domain octants (quadrants in

2D, Fig. 2). We call this cuboid octant of the unitary do-

main the ‘‘elementary flow domain’’ (EFD). Note that

the EFD for a parallelepiped (rectangular) lattice con-
tains a single inclusion in one corner (e.g., [32,1], here re-

ferred to as ‘‘Type I EFD’’); The EFD for an octahedral

(diamond) lattice contains two equally sized inclusions

in two diagonally opposite corners (‘‘Type II EFD’’).

The inclusions in the EFD each represent an octant of

the cuboid inclusions in the macro-domain.

2.2. Parametrization of the constitutive geometry of cuboid

inclusions

The geometry of a cuboid EFD is defined by six

parameters, which all have dimensions of length: the

length, dx, width, dy, and height, dz, of the EFD and

the length, bx, width, by, and height, bz, of the cuboid

inclusion. Using the Buckingham P theorem from

dimensional analysis (c.f., [48]), it follows that the
EFD geometry G can be defined by five dimensionless,
scale-invariant parameters, for example:

Rbh ¼
by
bx

; Rbv ¼
bz
bx

; Lx ¼
dx

bx
; Ly ¼

dy

by
; Lz ¼

dz

bz
ð2Þ

where the x-dimension represents the mean flow direc-

tion (direction of the macroscopic gradient), Rbh repre-
sents the inclusion width-to-length ratio, Rbv represents

the inclusion height-to-length ratio, Lx represents the ra-



Fig. 2. Two-dimensional Type I (rectangular lattice) and Type II (hexagonal or checkerboard lattice) patterns, illustrating the relationship between

the unitary domain and the macro-domain, the relationship between the elementary flow domain (EFD) and the unitary domain, example EFD flow

(for j = 1000) and the demonstration of the symmetry relationships that define the EFD within the macro-domain.

Fig. 3. Definition of the three-dimensional parallelepiped (Type I, left)

and octahedral (Type II, right) lattice and illustration of the Elemen-

tary Flow Domain (EFD) with one and two one-eighth sized

inclusions, respectively.
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tio of EFD length to inclusion length, Ly represents the

ratio of EFD width to inclusion width, and Lz represents

the ratio of EFD height to inclusion height. Lx,Ly,Lz
represent the length-scale of the EFD relative to the cu-

boid inclusions. Other important dimensionless parame-

ters associated with G are:

Rdh ¼
Ly

Lx
; Rdv ¼

Lz

Lx
; p1 ¼

pII
2

¼ bxbybz
dxdydz

ð3Þ

Rdh is the relative EFD width-to-length ratio; Rdv is the
relative EFD height-to-length ratio; p is the volume pro-

portion of the inclusions within the EFD and is equal to

the proportion of inclusions within the aquifer (sub-

scripts refer to Type I and Type II EFDs). The inclusion

lengths in the EFD are half of the actual inclusion

lengths in the unitary domain (Fig. 3).
Since the inclusions are, by definition, smaller than

the EFD, the side-lengths of the inclusions are bounded

by the side-lengths of the EFD. Hence, only three of the

five dimensionless parameters in (2) can be defined arbi-

trarily, the fourth and fifth are bound by the choices of

the first three. For example, for Rbh 2 ]0;1[ and
Rbv 2 ]0;1[ and p 2 ]0;1[, it can be shown from (2)

and (3) that Lz and, given Lz, then Ly are bounded such
that:

Type I : 1 6 Lz 6 1=p ð4a:IÞ
then : 1 6 Ly 6 1=p � 1=Lz ð4b:IÞ
and Lx is a dependent variable :

Lx ¼ 1=p � 1=Lz � 1=Ly ð4c:IÞ

Type II : 1 6 Lz 6 2=p ð4a:IIÞ
then : 1 6 Ly 6 2=p � 1=Lz ð4b:IIÞ
and Lx is a dependent variable :

Lx ¼ 2=p � 1=Lz � 1=Ly ð4c:IIÞ
subject to :MaximumfLx; Ly ; Lzg P 2

ð4d:IIÞ

The additional limitation (4d.II) in Type II arises from

the fact that the two inclusion cuboids in the EFD can-

not overlap, i.e., in at least one direction the length-scale

of the EFD is greater than 2. For either geometry, if one

of {Lx,Ly,Lz} is unity, the inclusion is a collection of

macroscopically sized parallel columns oriented in the

x, y, or z direction respectively. If any two of {Lx,Ly,Lz}
are unity, the inclusions are a collection of parallel mac-

roscopic planes. We also note that the flow patterns for

G ¼ fRbh;Rbv; Ly ; Lz; p	 are equal to the flow patterns for
G ¼ fRbv;Rbh; Lz; Ly ; pg, since flow is considered to be
along the x-axis and the two cases merely reflect a 90�
rotation of the unitary domain around the x-axis.
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2.3. Effective conductivity of EFDs with cuboid inclusions

2.3.1. Definition of Keff
Due to the flow field symmetry, the EFD has no-flow

boundary conditions on the faces parallel to the macro-

scopic hydraulic gradient, J = h$hi, and constant, uni-
form pressure heads on the two faces orthogonal to

the main gradient with area AEFD [L
2]. The pressure

head difference between the two faces, Dh [L], which
are separated by dx [L] is

Dh ¼ J � dx ð5Þ

By definition of the periodic boundary conditions, the
effective conductivity of the macro-domain is equal to

the effective conductivity of the unitary domain, and

hence, equal to that of the EFD (e.g., [32]):

Keff ¼ ðQmacro=AmacroÞ � J�1 ¼ ðQEFD=AEFDÞ � J�1 ð6Þ

(QEFD/AEFD) [L/T] is the total flux density through the

EFD, which depends on the conductivities, Kg and Kx,
of the two materials, the shape of the EFD, and on

the size and shape of the inclusions. Note that for a gi-

ven G, the flux density and therefore the effective con-
ductivity is scale-invariant (independent of the actual

length-scale), hence:

Keff ¼ f ðKg;Kx;GÞ ð7Þ
for example,

Keff ¼ f ðKg;Kx;Rbh;Rbv; Lx; Ly ; LzÞ ð8Þ
2.3.2. Effective bounds of Keff

Given p, Kg, and Kx, the range of Keff over all possi-

ble G is limited by the harmonic and arithmetic mean
[57]. The bounds are obtained at the one-dimensional

limiting cases of the EFD geometry. When Ly = Lz = 1,
flow is orthogonal to alternating layers of x- and g-
phases. The effective conductivity is the volume

weighted harmonic mean KH of the material

conductivities:

1=Keff ¼ 1=KH ¼ p=Kx þ ð1� pÞ=Kg ð9Þ

When Lx = 1 and either Ly = 1 or Lz = 1, phases are ar-
ranged in layers parallel to mean flow. Keff is given by

the volume weighted arithmetic mean KA of the material

conductivities:

Keff ¼ KA ¼ p � Kx þ ð1� pÞ � Kg ð10Þ
2.3.3. Relevant parametric range for computing Keff
Computing an effective conductivity is of interest pri-

marily when the dimensionless conductivity contrast j,
j = Kx/Kg, and the proportions of the phases, p and

(1 � p), are such that KA and KH of the EFD are signif-

icantly different from each other, i.e., c � 1, where
c = KA/KH. Otherwise, an approximation of Keff with

either KA or KH or with the geometric mean,

KG = 10
h1gKi, would serve many practical purposes,

regardless of the arrangement of the phases within the

flow domain.

Expanding the definition of c by using equations (9)
and (10) for KA and KH, c can be expressed as a function
of inclusion volume, p, and the conductivity contrast, j:

c ¼ ap2 � ap þ 1; where a ¼ 2� j � ðj�1Þ ð11Þ
It can be readily shown that c is greater than a thresh-

old, c0, at given p, if j meets the following condition:

ðj � j�1Þ > 2þ ½ðc0 � 1Þ=ðp � p2Þ	 ð12Þ
and, equivalently, the volume proportions of both mate-

rials, given j and c0, are bounded by:

1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 1� c0
2� j � j�1

r
< p;

ð1� pÞ < 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 1� c0
2� j � j�1

r ð13Þ

If we set c0 = 2 and j P 10, the above equation sim-
plifies to yield a very practical rule of thumb:

A significant difference between KH and KA is only

observed if both; p P j�1 and ð1� pÞ P j�1:

ð14Þ

And the corollary rule of thumb:

A significant difference between KH and KA is only

observed if both; j P p�1 and j P ð1� pÞ�1:
ð15Þ
2.3.4. Computation of Keff

Given G;Kg, and Kx, we obtain the effective conduc-

tivity, Keff, by solving the steady-state flow equation (1)

for the EFD subject to mean flow parallel to the x-axis.
From the solution to (1), we can solve the momentum

equation (Darcy�s law) and integrate over the outflow
face of the EFD to obtain the EFD flux. From (6) we

then compute Keff, obtain its log-transform, and normal-

ize lgKeff with respect to its Wiener bounds [57]:

K�
eff ¼ ðlg Keff � lg KH Þ=ðlg KA � lg KH Þ ð16Þ
From the Buckingham A theorem (c.f., [48]), it fol-

lows that the dimensionless effective conductivity, K�
eff ,

which varies between 0 and 1, is a function of j and G
only, but not of the actual value Kx or Kg or the actual

length scale of the EFD. A general solution for Keff can

therefore be obtained by considering the six-parametric

space spanned by j and G.
We use a numerical procedure coupled with non-lin-

ear interpolation to obtain the general solution for
K�
effðj;GÞ:



Table 1

Parameter values used for the simulations subject to the limits (3)–(5)

Rgh 0.01, 0.1, 1, 10

Rgv 0.001, 0.01, 0.1, 1, 10, 100

Lx 1.0667, 1.3617, 1.8824, 3.0476, 8

Ly 1.0667, 1.3617, 1.8824, 3.0476, 8

Lz 1.0667, 1.3617, 1.8824, 3.0476, 8

j 0.0001, 0.01, 0.1, 10, 100, 1000

Simulations were set up in terms of finite difference grid-block width-

to-length ratio, Rgh, grid-block thickness-to length ratio, Rgv, and the

number of finite difference grid-blocks per inclusion side-length. The

simulation domain was set to 64 · 64 · 64 grid-blocks, hence Rgh = Rdh

and Rgv = Rdv. Note that Rbh = Rgh * Lx/Ly and Rbv = Rgv * Lx/Lz.
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We define the limits of the six-dimensional parameter

space {j,Rbh,Rbv,Lx,Ly,Lz} such that many practical

applications for flow in porous media are included.

The six-dimensional parameter space is limited by

geometric considerations (Eq. (4)) and practical con-

siderations (rule 14 or 15). From this bounded six-

dimensional space, we select a finite number of regularly

spaced parameter combinations with four to six values
per parameter, yielding a total set of 14,114 possible

parameter combinations (Table 1). For each parameter

combination, we numerically solve (1) over the EFD

using a grid-cell centered finite difference algorithm with

a conjugate gradient solver (‘‘MODFLOW’’, [24]). The
Fig. 4. Illustration of the dependence of effective conductivity, K�
eff , on geo

conductivity inclusions (j = 1,000). Values in the grayscale maps of K�
eff vary

left corner, the insert illustrates the inclusion shapes represented by the map r

inclusion arrangements within the EFD as represented by the respective ma
finite difference grid spanning the EFD consists of

64 · 64 · 64 grid-cells. Since the number of grid cells
in each dimension is identical, the ratios of cell width

and cell height to cell length is equal to Rdh andRdv,

respectively; hence, for practical reasons we defined the

simulation parameter space (Table 1) in terms of Rdh

and Rdv instead of Rbh and Rbv. The choice of minimum

and maximum inclusion length (which define Lx, Ly, and

Lz, see Table 1) are dictated by numerical considera-

tions: Minimum thickness of each phase is set to be at

least eight grid-cells or equivalent to 24 grid-cells per

correlation length (see equation (18), below). This dis-

cretization is almost one order of magnitude finer than

the 4 grid-cells per correlation length typically found
sufficient for modeling heterogeneous porous media

with binary, bimodal, or continuous conductivity distri-

bution (e.g., [17,56]).

Here, we apply the procedure specifically for solving

K�
effðj;GIIÞ (cuboids on an octahedral lattice), which is
of particular interest to geologic media due to the alter-

nating position and potential interlacing of inclusions.

Solutions for the parallelepiped lattice are provided,
e.g., by Lu [32] who specifically considered spheroidal

inclusions. To obtain a continuous solution K�
effðj;GIIÞ

from the individual simulations, we map K�
effðj;GIIÞ by

non-linear interpolation within the parameter range
metric structure in a strongly heterogeneous periodic media with high

from approximately 0 (black) to approximately 1 (white). In the lower

egion {lgRbh, lgRbv}. In the upper right corner, the insert illustrates the

ps in the two panels.



Fig. 5. Univariate results of K�
effðRbvÞ for lgRbh < 0 and the same combinations of {Lx,Ly} as the right panel of Fig. 4 (Lz = 3.05). The sets of six

curves in each graph are for (from top to bottom) j = 0.0001, 0.01, 0.1, 10, 100, 1000.
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used for the computations (Table 1). Maps of

K�
effðj;GIIÞ shown in Fig. 4 are obtained by distance-
weighted least square estimation of K�

eff on a 30 · 30
point grid given measured K�

eff values on the 5 · 5
(lgRbh, lgRbv) datapoints shown. The estimation proce-

dure is a polynomial (second-order) regression, whereby

the weight decreases with distance from the measured

datapoints (Rbh;Rbv;K�
eff ) [35,52]. In the univariate exam-

ples of K�
eff shown in Figs. 5–8, we use graphical

interpolation.
3. Results

3.1. Patterns in GII

To understand the behavior of K�
effðj;GIIÞ, we first

consider the geometric patterns generated by
GII ¼ fRbh;Rbv; Lx; Ly ; Lzg. The first two parameters Rbh

and Rbv describe the eccentricity or anisotropy of the cu-

boid inclusions, which can be divided into three catego-

ries (Fig. 4, lower left insert):

• isotropic, cubic or near-cubic: (Rbh � Rbv � 1)
• anisotropic, planar:

– parallel to the mean flow direction: Rbv � 1 (hori-
zontal) or Rbh � 1 (vertical)
– orthogonal to the mean flow direction: Rbh � 1

and Rbv � 1 (vertical)
• anisotropic, columnar:

– parallel to the mean flow direction: (Rbh � Rbv

� 1)

– orthogonal to the mean flow direction: Rbh � 1
and Rbv � 1 (vertical) or vice versa (horizontal).

The three parameters Lx,Ly,Lz describe the spacing

of the inclusions in each direction and also define the
total volumetric proportion p of the x-phase. Since
Lx,Ly,Lz are dimensionless measures of EFD length,

each of them is also a measure of the directional propor-

tion of the x-phase material. If the relative spacing is
not equal in all three principal directions, that is, if

either Rdh 5 1 or Rdv 5 1 or both, the probability to

encounter the x-phase along a straight line is not inde-
pendent of the direction of that line. The existence of
an inequality between Li and Lj, i, j 2 {x,y,z} is referred
to as aniso-probability. Lu [32], for example, discussed

effects of aniso-probability within the context of paral-

lelepiped array aspect ratio (i.e., Rdh,Rdv) and inclusion

aspect ratio (i.e., Rbh,Rbv).

A geometric arrangement that is unique to the octa-

hedral (as opposed to the parallelepiped) lattice is

‘‘interlacing’’. Interlacing or overlapping patterns of
inclusions occur if two Li,Lj, i, j 2 {x,y,z} are smaller



Fig. 6. Univariate results of K�
eff (j) for Ly = Lz = 3.05 and four

inclusion shapes {lgRbh, lgRbv} corresponding to the near corner

regions of the {lgRbh, lgRbv} maps in Fig. 4. The sets of five curves in

each graph are for (from top to bottom) Lx = 1.07, 1.36, 1.88, 3.05, 8.

Fig. 7. Univariate results of K�
effðLyÞ for Lz = 3.05, j = 100, and four

inclusion shapes {lgRbh, lgRbv} corresponding to the near corner

regions of the {lgRbh, lgRbv} maps in Fig. 4. The sets of five curves in

each graph are for (from top to bottom) Lx = 1.07, 1.36, 1.88, 3.05, 8.

Fig. 8. Univariate results of K�
effðLxÞ for Ly = Lz = 3.05, j = 100, and

four inclusions shapes lgRbh, lgRbv corresponding to the near corner

regions of the {lgRbh, lgRbv} maps in Fig. 4.
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than 2. In that case, the third Lk,k 2 {x,y,z}, must be
greater than 2 (Eq. (4d.II)). Interlacing may occur paral-

lel to the mean flow direction (Lx < 2, Fig. 4, upper right

insert, shaded area top and right) or orthogonal to the

mean flow direction (Lx > 2, Fig. 4, upper right insert,

shaded area on the left). Interlacing occurs due to the

octahedral lattice arrangement of the inclusions repre-

sented by the Type II EFD (Fig. 3). It does not occur
in a parallelepiped lattice (Type I EFD) arrangement.

3.2. Effective conductivity dependence on EFD geometry

and conductivity contrast

To illustrate the behavior of K�
eff with GII, Fig. 4

shows maps of K�
effðlg Rbh; lg RbvÞ in a medium with rel-

atively high hydraulic conductivity inclusions
(j = 1000). Each map spans the entire simulated range
of lgRbh, lgRbv. The two-dimensional space within each
map represents various inclusion shapes (schematically

illustrated in the lower left corner insert). Maps are

shown for Lz just above 1 (upper left panel of maps)

and for Lz � 3 (lower right panel of maps). Each of
the two panels shows various maps, each for a specific

combination of Lx and Ly. Corresponding inclusion

arrangements of {Lx,Ly,Lz} are schematically illus-

trated in the upper right hand insert of Fig. 4 using a
cubic inclusion example. No solutions exist for Lx, Ly,

and Lz being smaller than 2 (area of the left panel cov-

ered by the right panel) (Eq. (4d.II)). The grayscale

maps of K�
eff vary from 0 (black) to 1 (white) indicating

whether the actual effective conductivity, Keff, is close to

either the harmonic mean conductivity (black) or to the

arithmetic mean conductivity (white), or in between

(gray). Figs. 5–8 present corresponding sets of univari-
ate solutions of K�

eff for a quantitative illustration of

the behavior of K�
effðj;GIIÞ.

3.2.1. Dependence on inclusion shape and conductivity

contrast

The extreme values of K�
eff within a map (within the

range of simulated Rbh and Rbv) always occur at the

map fringe. This means that the most eccentrically
shaped inclusions yield the lowest and highest K�

eff . Val-

ues of K�
eff monotonically increase or decrease along the

x- and y-direction of the mapped area. The highest

K�
eff—if there are significant variations at all—are always

observed in the lower left map area (Rbh � 1 and

Rbv � 1), which represents columnar or planar inclu-

sions whose main eccentricity axis is oriented parallel

to the mean flow direction (longitudinal inclusions, see
lower left cartoon, Fig. 4). This behavior arises because,

given a specific volumetric proportion p of the inclu-
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sions, longitudinal inclusions provide the most continu-

ity along the flow direction. This is true regardless of the

magnitude of j (Fig. 5): for j > 1, longitudinal inclu-
sions provide relatively longer flow-path lengths within

high conductivity inclusions than transverse inclusions.

For j < 1, longitudinal inclusions provide the least
resistance to flow in the high conductivity matrix.

The lowest K�
eff always occurs in the upper right map

area (Rbh � 1 and Rbv � 1), which represents planar

inclusions that are oriented orthogonal across the mean

flow direction. Regardless of j, the perpendicular orien-
tation of the planar inclusions minimizes the longitudi-

nal continuity of the flow paths and, hence, minimizes

the effective conductivity (e.g., [31]). In the subsurface,
such conditions are often encountered in vertical flow

through aquitards, which occurs across the main direc-

tion of hydrostratigraphic layering; and in fractured

rock where the macroscopic hydraulic gradient is per-

pendicular to the orientation of the main fracture bed-

ding plane.

Another distinct feature of the maps in Fig. 4 is that

the largest rate of change in K�
effðlg Rbh; lg RbvÞ always

occurs near the central map portion (Rbh � Rbv � 1).
From a physical point of view, this means that the effec-

tive conductivity is most sensitive to the cuboid inclu-

sion shape if the inclusions have low eccentricity. The

univariate functions K�
effðlg RbvÞ shown in Fig. 5 provide

a more quantitative interpretation of these results. To

plot the univariate functions in Fig. 5, ‘‘cross-sections’’

along lgRbv were prepared from the right-hand panel
of Fig. 4 (Lz = 3.05) for lgRbh < 0 (lgRdh = �1, Table 1).
Fig. 5 suggests that K�

effðlg RbvÞ approximately follows
a hyperbolic tangent function (not shown),

K�
eff ¼ aþ b � ½1þ tanhð�c � lg Rbv þ dÞ	=2 ð17Þ
The coefficients, a, b, c and d are measures of the

upper (a + b) and lower (a) asymptote of K�
effðlg RbvÞ in

the limits lgRbv! � 1 and lgRbv! +1 respectively.
The parameter c is a measure of the slope in the transi-

tion from upper to lower asymptotic value, while d is a

measure of the lgRbv value at which K�
effðlg RbvÞ obtains

the central value between the two asymptotic limits.

Curves for K�
effðlg RbhÞ exhibit an equivalent functional

form. However, results such as those in Fig. 5 indicate

that if one were to fit (17) to the data, each of these four

measures would also depend non-linearly on the remain-
ing four geometric parameters in GII as well as on the
conductivity contrast j. For example, at higher Ly,a in-
creases, albeit at different (and sometimes negligible)

rates for different Lx and j, while b decreases. The oppo-
site occurs with increasing Lx.

The hydraulic conductivity contrast j has significant
effects on K�

effðlg RbvÞ and, equivalently, on K�
effðlg RbhÞ

(not shown in Fig. 5). Most generally, for any GII;K�
eff

is found to increase with decreasing j and vice versa,
consistent, for example, with analytical results in paral-
lelepiped lattices with spheroid inclusions [32]. When

plotting the univariate function K�
eff (lgj) at a given

GII, we find that the functional form of K�
eff (lgj) is again

similar to (17) with lgj replacing lgRbv (Fig. 6). In most

cases, the steepest decline (highest sensitivity) of

K�
eff (lgj) occurs near lgj = 0, i.e., in the limit as the bin-
ary medium becomes homogeneous, where Keff = KA =

KH. The dimensionless K�
eff (lgj = 0) is indeterminate

(16). However, Fig. 6 suggests that the limit of K�
eff (lgj)

at lgj = �0 is identical to the limit of K�
effðjÞ at

lgj = +0. Numerical evaluation of these limits for K�
eff

is limited by the accuracy of computing K�
eff from Keff

for small values of j. Depending on p, numerical errors
in the evaluation of (16) typically become significant at
jlgjj smaller than 0.5–1 (see Eq. (12)).
Note that the four graphs of Fig. 6 (also Figs. 7 and

8) correspond to geometric conditions near the corre-

sponding four map corners in Fig. 4, hence Fig. 6 shows

K�
eff (lgj) solutions of the four most eccentric inclusion
shapes, {Rbh,Rbv}, that were simulated (compare to low-

er left cartoon in Fig. 4). In contrast to K�
effðlg RbvÞ, the

parametric measures a and b of (17) for K�
eff (lgj) quali-

tatively appear to be independent of the inclusion shape

and equal to 0 and 1, respectively. In other words,

regardless of p, the relative effective conductivity ap-

pears to always be close to either the arithmetic mean

(if j < 1) or the harmonic mean (if j > 1) if the conduc-
tivity contrast, jlgjj, is large enough. This would be con-
sistent with results, e.g., by Hui and Ke-da [26] for a

checkerboard geometry.
The inclusion shape and spacing significantly affects

the spreading measure c and the offset measure d of

(17) when applied to K�
eff (lgj). Longitudinal inclusions

have the highest d values (offset to the right). As a result,

for highly longitudinal inclusions (Fig. 6c), the simula-

tions give only the left most portion of the (assumed)

hyperbolic tangent function. Transverse inclusions move

the offset to the left with the left-most offset (lowest d)
and therefore lowest K�

eff observed for planar inclusions

perpendicular to the flow direction (Fig. 6b). For media

with j < 1, strong deviation from high K�
eff occurs only

when transverse planar inclusions interlace across the

mean flow direction (Lx > 2). In geologic media, those

conditions are often encountered in vertical flow through

aquitards with well-connected inclusions of high conduc-

tivity material; on a regional scale in closed basins with
thick, semi-confined aquifers that are recharged through

precipitation or irrigation returns at the water table and

pumped from significant depths; and in fractured rock

where the macroscopic hydraulic gradient is perpendicu-

lar to the orientation of the fracture bedding plane, but

where fractures are well connected.

3.2.2. Dependence on inclusion spacing

The sensitivity of K�
eff on the transverse inclusion

spacings, Ly and Lz is most apparent for EFDs that
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contain planar inclusions oriented parallel to the mean

flow direction, but whose main eccentricity axis is either

vertical (Fig. 4, upper left area of each map) or horizon-

tal across the mean flow direction (lower right area of

each map): When such inclusions are closely spaced in

the y-direction, i.e., Ly < 2, K
�
eff is high if the main axis

of such planar inclusions is also parallel to the y-axis.

In that case, K�
eff becomes nearly independent of lgRbh

and highest K�
eff are observed throughout the lower

map area. Conversely, the same holds true for small ver-

tical spacing, i.e., Lz < 2, and vertical (planar) inclu-

sions.The strong interaction between K�
eff and Ly for y-

directional, horizontal planar inclusions leads to a par-

ticular form of K�
effðLyÞ (Fig. 7d): If interlacing occurs

parallel to the flow direction (Ly < 2 and Lx < 2), then

K�
eff is very sensitive to Ly (steep slope). At Ly � 2 (limit
of interlacing) and above, this interaction abruptly stops

resulting in a sudden slope change in K�
effðLyÞ. The same

behavior is not observed as strongly at Lx > 2 (lower

two curves in Fig. 7d). As a result of such geometric

interactions between inclusion shape and spacing in

the transverse direction, the univariate behavior of
K�
effðLyÞ or K�

effðLzÞ is not always strictly monotonic
and the functional form of K�

effðLyÞ or K�
effðLzÞ depends

strongly on the inclusion shape (Rbh,Rbv) (Fig. 7).

Longitudinal to the mean flow direction, larger inclu-

sion spacing generally results in lower effective conduc-

tivity (Fig. 8). With some exceptions, K�
effðLxÞ decreases

nearly exponentially to an asymptotic base value that

depends on other parameters as well (Fig. 8). Highest
K�
eff occur as Lx approaches 1 (Figs. 4 and 8). The

near-exponential decrease is not observed for longitudi-

nal, highly eccentric inclusions that are closely spaced

(e.g., Fig. 8c). In those cases, K�
effðLxÞ remains uniformly

high until a threshold is reached near Lx = 2. In dilute

media, where inclusion spacing is large in all dimensions

(Lx � 3 and Ly � 3 and Lz � 3; p� 0.1), K�
eff is always

either near 0 (high conductivity inclusions) or remains
near 1 (low conductivity inclusions).

To provide an efficient continuous approximation of

K�
effðj;GIIÞ, a neural network was trained and tested on
the empirically obtained dataset in lieu of determining a

non-linear multivariate regression equation. The trained

neural network represents an empirical, but universal

transfer function K 0�
effðj;GIIÞ within the parametric

bounds defined by the numerical experiment. The neural
network modeling approach is described in Appendix A.

A Microsoft DOS/WINDOWS program for computing

K 0�
effðj;GIIÞ is available from the corresponding author.
4. Discussion: comparison to effective conductivity in ran-

dom and self-consistent media

In subsurface hydrology, most recent work related to

effective conductivity has focused on random fields, since
natural media do not exhibit the strict order of the peri-

odic media considered here. However, the distinct occur-

rence of, e.g., geologic or soil ‘‘layers’’, ‘‘inclusions’’, etc.

in natural geologic media suggests that natural media are

neither completely random and complex (high entropy)

nor strictly regular with simple patterns (low entropy).
Similar to the Hashin-Shtrikman bounds for binary com-

posite spheres assemblages [25], the solution described in

the previous section (and encoded in the transfer func-

tion model described in Appendix A) therefore provides

a low entropy bound for the effective conductivity of nat-

ural systems that is of potentially significant practical

interest. We therefore focus the discussion on exploring

the relationship between the parameters of the EFD
and those of random fields, and on exploring similarities

and differences between the effective conductivity of the

Type II periodic media presented here and various ran-

dom field and self-consistent representations, following

the spirit of, e.g., [6].

4.1. Relationship between parameters of regular and ran-

dom field geometries

The five dimensionless parameters of the EFD geom-

etry represent the degree of anisotropy, aniso-probabil-

ity, and the volume proportion of the inclusions. They

are obtained by measuring the three directional mean

lengths and three directional proportions of inclusions

in natural media. In contrast, random binary media

inclusions are often conceptualized as lacking both,
order and aniso-probability. For example, indicator

(‘‘IR’’) random fields [7,17,18] and transition probabil-

ity-Markov chain (‘‘TP’’) random fields [7,8] assume that

the mean separation distance between inclusions is iso-

probable, hLxi = hLyi = hLzi, and therefore entirely

determined by p. Such random binary media patterns

are defined by only three dimensionless parameters: the

volume proportion, p, of the inclusions, and the mean
anisotropy ratios, hRbhi and hRbvi, of the random x-
phase shape. Furthermore, thex-phase of randommedia
does not necessarily have to be an inclusion, i.e., there is

no strict isolation of the x-phase, which results in perco-
lation effects [50]. In both, the IR or TP random fields,

the inclusion shapes are defined by their mean length l

in each principal direction, and—in TP media with more

than two phases—the juxtapositional preference between
the sequence of phases (providing for a control of the de-

gree of order in the random distribution of different geo-

logic facies). The mean length ‘ of the x-phase in IR or
TP binary media is directly related to the correlation

length k of its variogram [8]:

ki ¼ 3‘g;ið1� pgÞ i ¼ x; y; z ð18Þ

This relationship is useful to define equivalent parame-

ters for regular media representations given the com-

monly measured variogram of geologic media.
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In the limit as the number of materials becomes infi-

nite, the distribution of material properties (e.g., con-

ductivity) is continuous instead of discrete. In

subsurface hydrology, these type of random fields are

commonly modeled using a joint Gaussian probability

distribution for lgK (c.f. [14]). The Gaussian random
field is defined by the mean and variance of lgK (equiv-

alent to defining proportions of phases and their con-

ductivity contrasts) and by a covariance or variogram

function with directional correlation lengths ki (defining
the degree of anisotropy in the lgK random field).

In summary, key differences between the binary peri-

odic media considered here and the heterogeneous ran-

dom porous media typically considered in stochastic
upscaling, are (1) the degree of order in the regular

media, which prevents connectivity of inclusions even

at a high degree of interlacing, i.e., at high p, (2) the flex-

ibility to model anisoprobable inclusion spacing, and (3)

the lack of variability in the length of individual inclu-

sions. The next section explores to which degree these

differences affect the behavior of the effective

conductivity.

4.2. Comparison to effective conductivity in binary random

fields

Desbarats [17] numerically computes effective con-

ductivities of binary sand-shale sequences generated as

indicator random fields. The three constitutive random

field parameters are Ksand/Kshale, kz/kx (ky/kx is set to
1), and the volume proportions pshale = 1 � psand. Equiv-

alent periodic media parameters are obtained using (18),

‘g,i/‘g,j = ki/kj, i, j 2 {x,y,z}:
j ¼ Ksand=Kshale; Rbh ¼ ky=kx ¼ 1; Rbv ¼ kz=kx;

Lx ¼ Ly ¼ Lz ¼ ½2=ð1� pshaleÞ	
1=3

for pshale > 0:75

j ¼ Kshale=Ksand; Rbh ¼ ky=kx ¼ 1; Rbv ¼ kz=kx;

Lx ¼ Ly ¼ Lz ¼ ½2=pshale	
1=3

for pshale < 0:25

The largest Lx used in our simulation that also fulfills

the iso-probability condition of the IR field is

Lx = Ly = Lz = 3, hence pshale 6 7.4% or pshale P 92.6%,
depending on whether shale is in the inclusion or in the

matrix, respectively. This limits the range of comparison

to extreme cases only. To allow for a comparison across

a broader range of pshale, we also compared the random

field solutions to regular media cases with interlacing

inclusions at relatively close lateral spacing: Given p,

we set Li = 3, and compute Lj = Lk, where

i, j,k 2 {x,y,z}, i5 j,k, from Eq. (4c.II). With Li = 3,
inclusions begin to interlace at p > 0.167. At p = 0.58

(largest simulated value), the inclusions interlace almost

completely (Lj = Lk = 1.067). Two main scenarios are

distinguished with respect to interlacing: By setting

either Lz or Ly to 3, the matrix remains open along
the mean flow (x) direction (‘‘X-x-1’’ in Fig. 9, where

X and x are placeholders for symbols explained below),

whereas at Lx = 3 the inclusions interlace orthogonal to

the x-direction (‘‘X-x-2’’ in Fig. 9).

In infinite indicator random media, isolated phases

exist only below the percolation threshold, pc. For
three-dimensional, correlated random media, pc � 13%
[47]. Hence, at pshale < 13%, shale is the isolated phase;

at pshale > 87%, sand is the isolated phase of the IR

media. At pshale between 13% and 87%, both sand/sand-

stone and clay/shale phases are continuous, although

small isolated regions of one or the other may occur.

In the periodic media, due to the isolation of the x-
phase, the solution Keff(pshale), is not unique and two sets
of curves exist (Fig. 9): j < 1 (clay/shale as inclusion,
‘‘C-x-x’’, pshale < 58%) and j > 1 (sand/sandstone as
inclusion, ‘‘S-x-x’’, pshale > 42%). As a result, while the

effective conductivity in random binary media continu-

ously decreases with increasing pshale, the two set of

curves for the periodic media (‘‘C-x-x’’ vs. ‘‘S-x-x’’) are

distinct and disconnected: with clay/shale as inclusion

(‘‘C-x-x’’), effective conductivity is much higher than
with sand/sandstone as inclusion (‘‘S-x-x’’). For aniso-

tropic and isotropic media alike and across the entire

pshale range, the random indicator media yields a Keff
that is larger than Keff for ‘‘S-x-x’’, but smaller than Keff
for ‘‘C-x-x’’. This confirms that the ordered media cases

provide low entropy bounds for natural media.

The influence of interlacing, at 0.16 < p < 0.58, is sig-

nificant and best observed for isotropic inclusions
(Rbh = Rbv = kz/kx = 1): For interlacing clay/shale inclu-
sions (‘‘C-i-x’’ in Fig. 9), the effect increases with the de-

gree of interlacing and hence with pshale. Significantly

lower Keff are observed for interlacing perpendicular to

the mean flow direction (‘‘C-i-2’’), than parallel to the

mean flow direction (‘‘C-i-1’’). In the latter case, flow

path tortuosity through the sand matrix (where most

of the flow occurs) is much smaller. Yet, even for ‘‘C-
i-2’’, the effective conductivity is equal to or only slightly

higher than in the isotropic random indicator media.

This suggests that the periodic interlacing of low-con-

ductivity inclusions across the mean flow path may be

a practical approximation of isotropic random medium

with no more than 60% clay/shale. A similar effect is ob-

served with sand/sandstone inclusions (‘‘S-i-x’’ in Fig.

9), even though the flow pattern now focuses on the
inclusions: again, interlacing along the mean flow direc-

tion allows for more efficient water flow than interlacing

across the mean flow direction (‘‘S-i-1’’ > ‘‘S-i-2’’, Fig.

9).

At low psand < 0.16 (pshale > 0.84) isotropic periodic

media has significantly lower Keff than the isotropic ran-

dom indicator media, despite the fact that sand-regions

are isolated in both, the periodic and the random media.
This phenomenon, also observed by Byström [6], may be

explained by considering that the randomness in the



Fig. 9. Keff (vertical axis) as a function of the proportion p (horizontal axis) of the low conductivity phase (shale, clay). (a) Comparison of periodic

media effective conductivity to random media effective conductivity, where j = 1E�04 (all labels ‘‘C-x-x’’) and j = 1E+04 (all labels ‘‘S-x-x’’).
Periodic media inclusions are isometric cubes (‘‘X-i-x’’) or (anisotropic) planar squared cuboids (‘‘X-a-x’’) with a thickness to body ratio of 1:15. The

latter are oriented either parallel to the flow direction (‘‘X-x-1’’) or perpendicular to the flow direction (‘‘X-x-2’’). The inclusions are interlacing along

the flow direction (‘‘X-x-1’’: Lz = 3) or interlacing perpendicular to the flow direction (‘‘X-x-2’’: Lx = 3). The effective conductivity of binary random

indicator media [17] are shown by symbols: (m) kz/kx = 15, (*) kz/kx = 1, (j) kz/kx = 1/15. Also shown are the effective conductivity, KN, of isotropic
Gaussian random fields, and the Wiener bounds, KH and KA. (b) Comparison of the periodic media effective conductivity to the effective

conductivity, KSC, of the self-consistent approach for isotropic media [14]; the self-consistent anisotropic (1:15 and 15:1) effective conductivities,

Keff,SC-aniso from Poley [45]; the lower and upper Hashin–Shtrikman bounds for isotropic binary media, KHS,lower and KHS,upper [25,14]; and the

Wiener bounds, KH and KA.
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sand-region distribution of the indicator random field

allows for locally closer spacing between individual

sand-regions offering a shorter flow-path through the

matrix and, hence, less resistance between isolated

sand-regions than in the periodic media. Lateral trans-

port within the randomly shaped sand-regions com-

pensates for the random distribution of the shortest
sand-to-sand flowpaths within the low permeable matrix.

Hence, media with randomly distributed isolated sand-

regions are a more efficient conductor than those with

regularly distributed sand-regions. In constrast, at low

pshale (pshale < 0.16, j < 1), the effective conductivity of
both the periodic and the random isotropic binary media

are identical and near the arithmetic mean (Fig. 9).

The overall effect of anisotropy on Keff (relative to
isotropic conditions) is similar in periodic and random

media (Fig. 9): Relative to isotropic media, larger Keff
are observed for flow parallel to layering, kz/kx < 1 and
lower Keff are observed for flow orthogonal to layering,

kz/kx > 1. However, in periodic media, the effects of
anisotropy can be further enhanced by the effects of

interlacing, if interlacing is in the same direction as the

main anisotropy axis. As described earlier, such ordered
interlacing combined with anisotropy leads to Keff being

near the harmonic mean (sand/sandstone inclusions,
j > 1) or near the arithmetic mean (clay/shale inclusions,
j < 1) across a wide range of pshale or psand. In contrast,
random binary media exhibits such proximity of Keff to

KA or KH only if the volumetric proportion of the inclu-

sions is small.

4.3. Comparison to effective conductivity in Gaussian ran-

dom fields

Effective conductivity, Keff,N, of jointly normal (Gaus-

sian) random fields have been estimated using various

stochastic methods (c.f. [14]). To first order, Keff,N of iso-

tropic random Gaussian media is given by:

Keff ;N ¼ KG½1þ r2lnK=6	 ð19Þ
where KG is the geometric mean of K and �ln� is the nat-
ural logarithm. From the definition of the variance of
lnK, r2lnK ¼ hðlnKÞ2i � ðhlnKiÞ2, it can be shown that
in binary media:

r2lnK ¼ ðln jÞ2½pð1� pÞ	 ð20Þ
Inserting (20) into (19) yields a first order approximation

of the effective conductivity in isotropic periodic or indi-

cator random media. Again, comparison of ordered

media effective conductivity to (19) is limited to a GII cu-
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boid periodic media approximation of a log-normal K

random field bounded by the condition Lx � Ly � Lz
due to the assumed stationarity of the mean and vari-

ance in all three principal directions (see above). Fur-

thermore, the Gaussian approximation applies only to

j > 1, that is psand < pshale, since the derivation of (19)
assumes a right-skewed distribution of K. The ordered

media estimates of Keff (‘‘S-i-1’’ and ‘‘S-i-2’’) are signifi-

cantly lower than those for a Gaussian random field

with equivalent variance. While some of the difference

stems from the error incurred by applying the small var-

iance approximation (19) to a large variance case, we

observe similar differences at j = 10, for which

r2lnKðpÞ < 1:3 (not shown). Hence, equivalent to binary
random fields, Gaussian random field approximations

of natural random systems yield higher effective conduc-

tivity than ordered media approximations of natural

random systems, thought to be due to the percolation ef-

fects caused by the random arrangement of the conduc-

tivity field (e.g., [6]).

4.4. Comparison to self-consistent approximation of effec-

tive conductivity

An analytical equation of effective conductivity based

on the self-consistent approximation by Bruggeman [5]

has been summarized by Beran [3] and Dagan [14].

The advantage of the approximation is that it does not

assume any underlying K distribution and is not limited

to small variances. For the specific case of isotropic, bin-
ary media, the effective conductivity, Keff,SC is:

Keff ;SC¼ 1=3½p=ð2Keff;SCþKgÞþð1�pÞ=ð2Keff;SCþKxÞ	�1

ð21Þ
At pshale < 10% and pshale > 90%, the self-consistent

approach provides an excellent approximation of effec-
tive conductivity in isotropic periodic media (Fig. 9b).

In that range of pshale,Keff of the regular media and Keff,
SC coincide with the upper (if j < 1) and lower (if j > 1)
Hashin–Shtrikman bounds for isotropic binary media

[25,14]. Note that Keff of the interlacing media ‘‘S-i-2’’

and ‘‘C-i-1’’ falls outside the Hashin-Shtrikman bounds

[KHS,lower,KHS,upper] for px > 10% due to the aniso-prob-

able spacing and interlacing of the isotropic inclusions!
In the case of sand inclusions, interlacing perpendicular

to the flow direction reduces Keff to values below the

lower bound, while in the case of clay inclusions, inter-

lacing parallel to the flow direction increases Keff to val-

ues above the upper bound (Fig. 9b). This is significantly

different from non-interlacing periodic media. For

example, Byström [6] compared the two-dimensional

Keff of periodic media with random, rectangular (2D
Type I EFD), and also hexagonal (2D Type II EFD)

arrangement of spherical inclusions with j > 1 against
the lower Hashin-Shtrikman bound. While the hexago-
nal arrangement gave the lowest Keff among the three

arrangements, it was not lower than the Hashin-Shtrik-

man bound.

If interlacing of isotropic clay/shale inclusions is per-

pendicular to the mean flow direction (‘‘C-i-2’’), Keff,SC
is a good approximation, even at higher p values (up
to 58%). However, with sand/sandstone inclusions at

psand > 25%, Keff,SC significantly overestimates effective

conductivity regardless of the direction of interlacing

(‘‘S-i-1’’ and ‘‘S-i-2’’).

Self-consistent approximations of effective conductiv-

ity, Keff,SC-aniso, in anisotropic media (Rbh,Rbv, kz/
kx 5 1) have been presented by Poley [45]. Keff,SC-aniso
for flow parallel and orthogonal to the main anisotropy
axis are significantly lower than the observed Keff of the

anisotropic ordered media with the clay/shale inclusions

(Fig. 9b). On the other hand, Keff,SC-aniso, like Keff,SC, sig-

nificantly overestimates effective conductivity in ordered

media with sand/sandstone inclusions, regardless of

anisotropy direction.
5. Conclusion

This paper presents an original solution for the effec-

tive conductivity of a binary medium characterized by a

regular (periodic) pattern of identically sized cuboid

inclusions located on an octahedral lattice. We describe

the constitutive geometry GII and determine the effective
conductivity of the macro-domain by determining the
flow through the ‘‘elementary flow domain’’ (EFD,

Fig. 3), which is an octant of the unitary domain or unit

cell of the periodic media.

For the six-dimensional parameter space of fj;GIIg,
we derive practical bounds of interest. We then and

numerically compute solutions for over 14,000 individ-

ual parameter combinations spanning the bounded

parameter space in regular intervals. Using non-linear
interpolation of the numerical results, a continuous

solution Keffðj;GII) is obtained for the entire parameter
space within the limits 10�4 < j < 104, 10�3 < Rbh,

Rbv < 10
2, and 1.0667 < Lx,Ly,Lz < 8.

The results provide the low entropy bounds for the

effective conductivity in natural media, which are less or-

dered than the system considered here. Comparison of

the results to effective conductivities derived for random
heterogeneous media and to several self-consistent esti-

mates demonstrate similarities and differences in the

behavior of the effective conductivity between random

and regular media. The following are key conclusions:

I. The approach allows us to directly compare effec-

tive conductivities of very low entropy (regular)

media against that of high entropy (random)
media over a large range of structural geometries.

By comparing measured effective conductivity of
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natural media to those of respective random and

regular media representations as presented, e.g.,

in Fig. 9, it may be possible to determine the

degree of entropy within the natural media.

II. The regular media solution developed here allows

for consideration of aniso-probable spacings
between inclusions, i.e., for media where the prob-

ability of encountering an inclusion is not identical

in all directions. Because of the aniso-probability

condition, the absolute bounds of Keff for isotropic

inclusions are the Wiener bounds, not the Hashin-

Shtrikman bounds.

III. For media with large spacing of isotropic, cubic

inclusions (Lx,Ly,Lz > 3; p < 0.08), the results are
in agreement with the self-consistent effective con-

ductivity originally proposed by Bruggeman [5]

and applied to porous media by Poley [45] and

Dagan [14].

IV. For anisotropic cuboid inclusions, or at relatively

close spacing in at least one direction (p > 0.2),

the effective conductivity of the periodic media is

significantly different from that found in aniso-
tropic random binary or Gaussian media:

A. Periodic media with low conductivity inclu-

sions have a higher effective conductivity than

random binary or log-normal conductivity

media with equivalent phase-proportions (or

variance) and anisotropy ratio due to the

strong connectivity in the higher permeable

g-phase.
B. Periodic media with high conductivity inclu-

sions have lower effective conductivity than

equivalent random or log-normal media due

to the isolation of the inclusions. Isolation is

not observed in correlated binary random indi-

cator media with p > 0.13 due to the existence

of the percolation threshold.

The practical applicability of the periodic media ap-

proach with aniso-probable and non-stationary K distri-

bution to hydrogeologic problems remains to be

investigated. But consider, for example, the structure

within alluvial depositional systems of neozoic origin:

These systems reflect the depositional regimes of alter-

nate short-term flooding events and longer term non-

flooding stages. At a longer time-scale, the depositional
system reflects climatic and possibly tectonic cycles,

which lead to multiscale hierarchical depositional sys-

tems [56]. The solution presented here allows us to ex-

plore the effects of multiple scales within a flow system

on effective hydraulic conductivity. In it�s simplest
expression of isotropic inclusions, we observe a dichot-

omy of effective conductivity (‘‘C-i-1’’ vs. ‘‘C-i-2’’ and

S-i-1’’ vs. ‘‘S-i-2’’ in Fig. 9) at identical volume propor-
tions, hydraulic conductivity contrasts, and inclusion

shape merely due to the intermediate scale non-station-
arity created by interlacing. Future work is needed to

further explore such applications.
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Appendix A. Transfer function for K�
effðj;GIIÞthrough

neural network training

In light of the complexity of the observed parametric

relationship K�
effðj;GIIÞ (Figs. 5–8), we chose to use neu-

ral network training rather than non-linear multivariate

regression to determine a continuous transfer function
K 0�
effðj;GIIÞ. The transfer function is obtained by mini-
mizing an objective function based on the difference be-

tween K 0�
effðj;GIIÞ and measured values K�

effðj;GIIÞ. We
trained a multilayer perceptrons feedforward neural net-

work with sigmoid activation functions (originally due

to [49], and discussed at length in most neural network

textbooks, e.g., [4]) due to the smooth and generally sig-

moidal behavior of K�
effðj;GIIÞ. Data input and output

are automatically scaled using minimum/maximum

and mean/standard deviation linear scaling. The neural

network consists of a layered feed-forward topology

(input layer, multiple hidden layers, output layer). Opti-

mization is achieved using a combination of backward

propagation with time-varying learning rate and

momentum and order shuffling in the early stage and a

conjugate gradient descent in the final stage with auto-
matic cross verification: After a fit is obtained, the model

is tested on a verification set or test set. To take full

advantage of the dataset obtained from the MOD-

FLOW simulations, which represents a single sample

layer across the parameter space fj;GIIg, we apply the
bootstrap (bagging) method with random resampling.

One third of the input data is randomly picked as veri-

fication dataset. Optimization with bagging ensures bet-
ter global optimization and allows us to simultaneously

estimate the predictive capability of the neural network.

Initially, neither the exact number of hidden layers

(from 2 to 4) nor the number of units within each layer

is specified. The optimal number of hidden layers and

layer units is determined with an automatic search algo-

rithm that tests multiple networks and improves net-

work topology based on neural network regularization
and sensitivity analysis. Over-fitting of the neural net-

work is suppressed by using a selection data-set and



Fig. 10. Predicted vs. observed dimensionless effective conductivity, K�
eff for a trained neural network with two hidden layers in a feed-forward

topology. A self-contained program of the neural network transfer function for K�
eff can be obtained from the corresposnding author.
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by checking error on that set during the iteration process

(when the error increases, the optimization terminates).

To penalize networks with large curvature (overfitting),

Weigend weight regularization [55] is applied, which re-

moves hidden units once all weights are below a given

threshold.

The best network training was achieved by limiting
the training to the dataset with 0:1 < K�

effðj;GIIÞ < 0:9
(approximately 4000 datapoints). The optimal neural

network trained on the dataset contained two hidden

layers in a 6-35-34-1 topology. The mean absolute error

of the network is less than 4% with a correlation coeffi-

cient of 99% (Fig. 10). The trained network (available as

an easy-to-use black-box DOS program from the corre-

sponding author) represents an empirical continuous
upscaling function K 0�

effðj;GIIÞ for flow in binary media
with a Type II EFD. The only limitation is that the

parameters of the EFD must be within the limits of

fj;GIIg spanned by the training dataset given in Table 1.
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