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2.  HETEROGENEITY, PROBABILITY, AND RANDOM FIELDS

2.1 Introduction:  Heterogeneity and Stochastic Analysis

Spatial heterogeneity refers to the variation of a physical property in two- or three-

dimensional space.   This physical variation is encountered in many earth science applications;

it is of particular interest when studying flow and transport processes in the unsaturated zone.

When examining soil media, spatial heterogeneity is observed on many different scales such as

the microscale of a single pore, the intermediate scale of laboratory experiments, the scale of

field experiments, and the megascale, which encompasses entire regions.  This work is not

concerned with the spatial heterogeneity on the microscale or pore scale because the governing

physical laws for porous media flow (chapter 4) are only valid on a scale larger than the

microscale.  Bear (1972) defined "Representative Elementary Volume" as the smallest volume

over which there is a constant "effective" proportionality factor between the flux and the total

pressure gradient or total head gradient.  This proportionality factor is called the hydraulic

conductivity of the REV.  By definition of the REV, the hydraulic conductivity does not rapidly

change as the volume to  which it applies is increased to sizes larger than the REV.   This is

based on the conceptual notion that either no heterogeneity is encountered at a scale larger than

the REV or that heterogeneity occurs on distinctly scales, the smallest of which is the REV

(Marsily, 1986).   The latter model assumes that within each scale relatively homogeneous

regions exist.  Within these homogeneous units heterogeneities can only be defined on a

significantly smaller scale.  Geologists refer to these different scales as facies (Anderson, 1991)

while hydrologists commonly speak in terms of hydrologic units (Neuman, 1991).   Analysis of

a large number of hydrologic  and geologic data from different sites associated with different

scales has shown that the existence of  discrete hierarchical scales for any particular geologic

or hydrologic system vanishes in the global view as the multitude of different geologic or

hydrologic units allows for a continuous spectrum of scales (Neuman, 1990).   This study is
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limited to the scale of a typical research field site; this is representative for many field

contamination studies i.e., roughly the meter and decameter scale (100-102 m).

For the scale of the REV, mathematical models based on the physics of flow and

transport in homogeneous porous media have been well-established in the literature and their

accuracy has been verified in many laboratory experiments (c.f. Hillel, 1980).  The physical

meaning of the underlying model parameters is already well-understood (c.f. Jury, 1991).  It is

the fundamental mathematical treatment of flow and transport in heterogeneous porous media,

which is of concern in this study.

Spatially heterogeneous properties can belong in either one of the following two classes

depending on the problem formulation:

(a) porous medium properties that are measurable and that are seen as the cause of flow

and transport behavior in soils such as pore geometry, the saturated permeability of the

soil, the soil textural properties, and the soil water distribution;

(b) porous medium properties that are predictable based on physical laws or functions of

class (a) properties e.g.,  the distribution of soil moisture flow and the solute

concentration at some future time.

In very general terms, this dissertation is about the spatial heterogeneity of class (b) properties

given some knowledge about the heterogeneity of class (a) properties.  More specifically, the

spatial heterogeneity of (and hence the uncertainty about) soil water tension, soil moisture flux,

and solute transport in soils is computed based on some information about the spatial

heterogeneity of the hydraulic properties of unsaturated porous media.  Mathematically, spatial

heterogeneity can be dealt with in one of three ways:

1. The local (REV-scale) porous media properties (soil property class (a)) are described

at every point throughout the field area of interest.  Then the classic flow and transport

equation are used in a  numerical model to obtain the  output variables (soil property

class (b)).  This approach requires an enormous amount of measurement data and is for

all practical purposes impossible to implement.
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2. Spatial heterogeneity is neglected and instead some form of "effective" parameter is

determined to define the flow and transport problem on the scale of interest.  Classical

flow and transport solutions  (analytical or numerical) are applied to solve the problem

for a quasi-homogeneous domain  with "effective" parameters.   This is probably the

most widely used approach in both soil and groundwater hydrology due to its relative

simplicity and low computational cost.  The disadvantage of the method lies in the

uncertainty of the prediction, since the "real" field parameters may differ significantly

from those assumed in the model.

3. An entirely new  mathematical approach is developed that considers the limitations of

our knowledge about the field site and  that quantifies the uncertainty in the prediction

of soil property class (b) given that only a small and economically reasonable amount

of measurements are available from the field site (class (a) data or class (b) data).  To

that end, spatial stochastic analysis has been developed over the past three decades for

a wide variety of similar problems not only in the treatment of unsaturated zone flow

and solute transport but in the treatment of many earth science problems.

The stochastic approach is adopted in this  study since the  primary interest lies not only in

making a best  prediction but also in  quantifying the uncertainty of the prediction.   In this

chapter probability  theory is introduced together with some of its most important lemmas to

show, how - in principle - spatial heterogeneity is conceptualized in form of a mathematical

model.  Based on probability theory, stochastic analysis (which is a particular form of

mathematical analysis)  allows the derivation o f the probabilistic parameters describing the

spatial heterogeneity of class (b) properties given the probabilistic parameters describing the

heterogeneity of class (a) properties.  A particular challenge arises, when deterministic

measurement data of either class (a) or class (b) properties are given in addition to the

parameters describing the degree of heterogeneity.   The additional deterministic information

must be reflected in the derivation of the probabilistic parameters describing the spatial

heterogeneity of class (b) properties.  Conditional probability theory and conditional stochastic
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analysis will be introduced for this type of application.

Stochastic analysis is closely associated with the theory of random processes, which is

a branch of mathematics called probability theory.  Probability theory itself is a branch of

mathematics called measure theory. "Probability theory and measure theory both concentrate

on functions that assign real numbers to certain sets in an abstract space according to certain

rules." (Gray and Davisson, 1986 p.27).  The treatment of spatial heterogeneity in terms of

random processes is a highly abstract procedure, the appropriateness of which has been

questioned.  However, this treatment is justified by Athanasios Papoulis (1984, p. xi):

"Scientific theories deal with concepts, not with reality.  All theoretical results are derived

from certain axioms by deductive logic.  In physical sciences the theories are so formulated

as to correspond in some useful sense to the real world, whatever that may mean. However,

this correspondence is approximate, and the physical justification of all theoretical

conclusions must be based on  some form of inductive reasoning ."

For a complete derivation of the concepts of random variables, random processes, and stochastic

differential equations there is a vast amount of literature that has been published in this area for

many different applications  (see e.g. Gray and Davisson, 1986;  Papoulis, 1984;  Priestley,

1981).  The intent of this chapter is to give the reader a full appreciation of the theoretical basis

of random processes.  This should allow a better understanding of the scope of stochastic

modeling.

2.2 Principles of Probability Theory

Probability theory is a construct that allows rigorous quantification of  rather imprecise

statements such as "tomorrow there may be rain", or "the contaminant plume may already have

reached the groundwater table".  Such statements are mostly based on past experiences in similar

circumstances.  The statements are about the chances of one particular result or outcome out of

a total of two possible outcomes (a "sample space" of two outcomes), for example, groundwater
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is either contaminated or not.

There could be more than two possible results e.g., a: "groundwater is contaminated to

the extent that it affects a well-field", or b:  "it is contaminated without affecting any wells", or

c: "it is not contaminated at all".  In this example there are three possible outcomes, which form

a set called the "sample space" S={a,b,c} of all possible outcomes. The two outcomes with

contaminated groundwater can be grouped together in a set or "event" F={a,b}, which is equal

to the event "groundwater is contaminated" in the very first example.  The complementary set

to the event F={a,b} is the event Fc={c}: "groundwater is not contaminated".  The latter event

is a singleton set or a set with only one element (outcome).  Another possible event is "no well

is contaminated" i.e., the set F={b,c}.  This event also possesses a complementary set within the

sample space S:  Fc={a} or "groundwater is contaminated to the extent that it affects some

wells".  Yet another possible event is F={a,c} "some wells are contaminated or the groundwater

is not contaminated at all", which has the complementary event Fc={b} "groundwater is

contaminated without affecting any wells".  Finally there is the trivial event F={a,b,c} "the

contamination has either not reached the groundwater,  has reached the groundwater but no

wells, or has already reached the wells", which is equal to the sample space S.  This event

possesses the complementary event  Fc={N}, the so-called empty set with no elements at all.  All

possible events for the sample space S={a,b,c} are now defined.  Each of these events is a set.

 A set of all eight possible events (or sets) in the sample space S, can also be defined.  In set

theory "sets of sets" are called "classes" of sets, and the class of all eight possible sets mentioned

above is called the "power set" of S.  Since each set is also an event, the power set is called a

"class F of events"  or simply an "event space".    To be precise, each set is called an event only,

if a probability measure  P  is assigned to the set.  Only then the above probabilistic

"experiment" is completely defined.  As in this example, the theory of probability rests upon the

principles of set theory.

In this simple example all basic elements necessary to define a probability problem, or -

in mathematical terms - a "probability space" are encountered.  Formally, a probability space
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(2-1)

(2-2)

consists of three basic, well-defined objects: The sample space S, which is a set of all possible

elementary outcomes; the event space F, which is the group of all possible events F such that

each event Fi is some combination of the elementary outcomes and such that the event space F

is closed under certain set-operations e.g., if Fi0F then Fi
c0F.  Finally, the space (S,F) must be

"measurable" such  that there exists a probability measure P, which assigns a probability to each

event Fi in the event space.  The three fundamental axioms of the probability measure P are:

where the last equation is for both a finite event space (finite countable number of events) and

an infinite event space (infinite number of events).

The above contamination example was a finite event space.  An infinite number of

events can occur in a discrete sample space e.g., the sample space S(ù) of all integer numbers,

or in a continuous sample space e.g., the sample space S of all spatial points in a particular soil

cross-section.  An event space F with an infinite number of events is called a "Borel Field" B.

One of the most common Borel fields is the class B(R) of all open intervals on the real line.

A very useful probability measure for discrete events can be derived from the

"probability mass function" (pmf) p(T), which assigns a real number p(T) to each elementary

outcome T in the sample space S, and which has the following properties:

The probability measure P(F) is defined as:
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(2-3)

(2-4)

Note that the pmf  is not a probability measure since it is defined for the elementary outcomes

themselves and not for a collection of sets.   An example of a  commonly used pmf is the

uniform pmf:  S = ùn = {0, 1, 2, ..., n-1} and p(k) = 1/n, k0ù.

Similarly the "probability density function" (pdf) f(T) for continuous sample spaces is

defined by:

where P(F) is the probability measure for the continuous sample space B.  The probability

density function of a random variable is often expressed in functional form.  The following pdfs

are of importance in this study:
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(2-5)

where : and F² are parameters of the normal and lognormal pdf.  The normal pdf is also called

the "Gaussian" pdf.  " and $ are parameters of the Laplace or double exponential pdf.

In the previous paragraphs the properties of the probability space (S,F,P) are defined

and the pmf and pdf are introduced as tools to compute the probability measure P.  The entire

framework of stochastic analysis, which is a part of probability theory, rests like probability

theory itself upon these definitions  of the probability space, the basic operations of set theory,

and the principles of mapping or functions.   Mapping one probability  space into another via

some functional relationship is the key to the work presented in this dissertation, since the

essence of stochastic analysis is the "connection of a system to a probability space with a

description of  the output"  (Gray and Davisson, 1986,  p.29)  and the main objective of

probability theory is  "to find the probability of some new event formed by set-theoretic

operations on given events, given a probabilistic description of a collection of events" (ibid.).

The first quoted statement was illustrated in the contamination example above.  The

second statement concerns itself both with the additivity property of the probability measure and

with the mapping of a probability space into another probability space.  The additivity property

of P can be exemplified again with the contamination problem:  Assuming the following

probabilities are known:  P({c}) "the groundwater is not contaminated" is 20%, and the

probability P({b}) that "the groundwater is contaminated, but the contamination does not affect

any wells" is 10%.  What is the probability P({a}) that  "the groundwater is contaminated, and

the contamination has also reached some wells"?  From (2-3) it can easily be seen that
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P({a})=P(S)-P({b})-P({c})=70%.  Similarly the probability P({a,b}) of the event {a,b}

"groundwater is contaminated" is then P({a,b})=P({a})+P({b})=80%.

Mapping (also called filtering, sampling, estimating, averaging, or measuring) is the

process of mapping each element TA in a sample space SA into another sample space SB.  An

example is SA = {a,b,c} of the contamination example.   A second sample space  SB = {d,e,f}

is defined such that d: "remedial action taken by EPA", e: "remedial action taken by fire

department", f:  "no remedial  action taken".   Also the  following mapping  (or function)  is

defined:  g:T -> SB, such that g(a)=d, g(b)=d, g(c)=f i.e., if the groundwater is contaminated at

all, EPA will take remedial action; if it is not (yet) contaminated, no remedial action will be

initialized.  The sample space SA = {a,b,c} is called the domain of the function g, the sample

space SB = {d,e,f} is called the range of g,  and the set of all g(SA)  in SB, SC = {d,f} is called

the range space of g.  g is a completely deterministic process, because it defines an exact

mapping of the sample space SA into the sample space SB.  Since each element of SA is

associated with  a probability,  g provides a tool to  determine the probabilities  in the  range SC

of the domain SA:  The chances of {d} "EPA taking remedial action" are equal to the chances

of {a,b} "groundwater is contaminated", which is 80%.  Then the chances of "no action taken"

are 20%.  

Notice that the above example is not a one-to-one mapping and that there is no inverse

mapping g-1(d).  Defining g(a)=d, g(b)=e, and g(c)=f, SA is mapped "onto" SB and the range SB

is equal the range space SC = {d,e,f}.  g is said to have an inverse function g-1, because the

mapping is one-to-one.

A mapping can occur between a discrete domain and a discrete range, between a discrete

domain and a continuous range (albeit the range space is still discrete), between a continuous

domain and  a continuous range,  and also between a continuous domain and a discrete range.

The contamination example was of the first category.  Considering, for example, the amount of

contaminant mass in the aquifer as a function of the outcome SA would be a mapping between

a discrete domain and the (continuous) real line ú.  The stochastic analysis of unsaturated flow
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(2-6)

(2-7)

(2-8)

and transport processes is in principal the mapping of the sample space of soil hydraulic

properties into the sample space of flow and transport properties.

2.3 Independence and Conditional Probabilities

Reconsider the initial contamination example with the sample space SA={a,b,c}.  The

elementary events of this sample space are "mutually exclusive", since given one of the events

{a}, {b}, or {c}, none of the others can occur at the same contamination site (in the same

experiment):  Either  the groundwater and the wells are contaminated, or only the groundwater

is contaminated or  the groundwater is not contaminated at all.  It is impossible that the

groundwater is contaminated  AND that it is not contaminated.    The probability of one event

Fa occurring, if any other mutually exclusive event Fb has occurred is therefore zero:

In contrast,  one speaks of "independent" events,  if the probability of one occurring is

independent of whether the other event occurred.  Independent events must be from at least two

different experiments, each of which has a well-defined sample space.  Say, for example, there

exist two identical contamination sites at different locations, with a given probability space

(S,F,P) for each of the two sites.  The two events occurring at the two sites are called

"independent", since the probability of the event occurring at one site is independent of the

probability of the event occurring at the other site.   Then the probability of the event Fa at site

A AND the event Fb at site B to occur concurrently is:

Similarly a collection of events {Fi, i=1,k} is called "mutually independent", if 
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(2-9)

(2-10)

An example of the latter is the probability of wells contaminated at all of several contamination

sites throughout an area, each of which has a probability space (S,F,P).  If, however, two

contamination sites are located very close to each other, the resulting events may not be

independent.  Then their combined probability space has to be taken into account.  The

combined probability space is also called the 'multivariate' probability space.

The conditional probability is the probability that an event Fa occurs given that another

event Fb has already been determined to have taken place.  It must be emphasized that

conditional probabilities can be defined for events at the same site or of the same experiment,

but also for events from two different sites or experiments if their combined or multivariate

probability space is considered.  For example, the probability P({a}|{a,b}) of {a} "a well is

affected by groundwater contamination", given that somehow it is known that the event {a,b}

"groundwater is contaminated" has occurred is defined as:

More generally, the conditional probability of an event Fa given the occurrence of event Fb is:

It can be shown that conditional probabilities satisfy all the basic axioms of a probability space

(2-1).  An important property of conditional probabilities, which is derived from the above

definition is "Bayes' theorem":
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(2-11)

where the events FAi are mutually exclusive and the union of all events U FAi = S.  The event Fb

is an arbitrary event in S.  The denominator on the right hand side is called the "total

probability" of the event Fb.  It is the sum of all conditional probabilities of the event Fb given

the collection of events {FAi, i=1,n}.

In the contamination example,  the class of events {{a},{b},{c}} is one of several

possible classes that are mutually exclusive and exhaustive of the sample space S (a "partition"

of S).   Assume soil samples were  taken nearby the well.   It is further assumed that the

following conditional probabilities are known:  If the well is affected by groundwater

contamination, chances are 40% that the soil sample is also contaminated.   If the groundwater

is contaminated,  but no wells are affected,  chances are 30% that the soil sample is

contaminated.   If the groundwater is not  contaminated at all,  chances are 5% that the soil

sample is contaminated.  Bayes' theorem is used to determine the conditional probability of the

event {a} "groundwater contaminated to the extent where it affects wells" given that the event

{d} "soil sample contaminated" has occurred:   The total probability of {d} (denominator of (2-

11)) is:

P({d}) = 0.4 0.7 + 0.3 0.1 + 0.05 0.2 = 0.32

Then the conditional probability

P({a}|{d}) = 0.4 0.7  /  0.32 = 0.875

In subsequent chapters, the concept of conditional probabilities is applied extensively to random

variables and functions of random variables.  Bayes' theorem plays a fundamental role in the

development of this study.
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(2-12)

2.4 Random Variables and Random Vectors

2.4.1 Random Variables

With the basic definitions of the probability space, of independence, of the conditional

probability space, and of functions, we are well-equipped to proceed with the definition of a

random variable X.  The term random variable (RV) is actually improper, since by its formal

definition a random variable  is neither random nor a variable.  Mathematically speaking a

random variable X(T) is a function that maps one to one any elementary outcome of an

experiment (or probability space) (S,F,P) into a subset of the real line:

where B(ú) is a Borel field on a subset of the real line (where the "subset" is an interval and may

be the entire real line itself).  In other words, every outcome T in the abstract sample space S

is assigned a real number  B  through the random variable X(T).  S is the domain to the random

variable, and the subset B(ú) of the real line ú is the range of the random variable X.

As an example, let us consider a small core sample of soil .   SKs is the sample space of

all saturated permeabilities.  Then X:T -> B(ú), T 0 SKs,  is the saturated permeability of this

soil sample measured  in units of [length/time].    X is a real number  corresponding to the

physical property in the soil core called saturated permeability.  Other random variables

measured on the soil core are e.g. the water content, the matric potential, and the unsaturated

hydraulic conductivity.  Generally random variables can be considered as "measurements of an

experiment" of which the outcome is unknown a priori.

The probability distribution of the random variable X (which may be a pmf, a pdf, or

a mixture of both) can be derived from the  probability distribution of  the underlying experiment

S since the probability PX(b)  that X takes on a value  in b is the probability that the inverse of

X, X-1 takes on T:
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(2-13)

(2-14)

For most applications it is convenient to use the probability measure PX rather than the original

probability measure PS i.e., one generally operates with the probability space (SX,B,PX) where

SX is the range space of the random variable X(o).  It is important, however, to keep in mind

that the probability space of X is only inherited from the original sample space.  There may be

other random variables that are derived from the same original sample space S.  When analyzing

the relationship between different random variables,  their origins must be considered since

common origins generally suggest certain dependencies between RVs of the same sample space.

As an example consider the above mentioned soil core itself as being from the sample space

Score, at which different random variables are measured:  the saturated hydraulic conductivity,

the unsaturated hydraulic conductivity, the soil water potential, the water content, etc.  Each of

these random variables is a different type measurement of the exact same physical soil core.

Mathematically speaking all random variables are in the same domain Score.  Although the

derived probability measures or probability distributions of these random variables may vary,

they are not necessarily independent of each other.

The relationship between the pmf pX(x) of a discrete RV X and its probability

distribution PX is defined equivalently to (2-2):

and in the case of a continuous X with a pdf fX(x):
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(2-15)

(2-16)

(2-17)

FX(xi) is called the cumulative distribution function (cdf) of X.  It represents the cumulative

probability of X # xi.  Note the following properties of the cdf:

The definition of the cdf allows for the construction of a relationship between the pdf and the

probability measure of X such that one can be defined in terms of the other. The definitions of

some of the most important pdfs including all those that will be used through the course of this

study are already given in (2-5).  Their respective cdfs are found by integration of the pdf over

the half open interval (-4,x].

The conditional cdf of a random variable X, given the event Fb is defined equivalently

to (2-10):

The conditional pdf of X is fX(x|Fb) = dFX(x|Fb)/dx.  With these definitions  Bayes' theorem for

continuous random variables becomes:
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(2-18)

(2-19)

(2-20)

(2-21)

(2-22)

With Bayes' theorem the conditional pdf of a random variable X given an event Fb is determined

from the unconditional pdf of the random variable X and from the conditional pdf of the event

Fb given the outcome of the random variable X.  Bayes' theorem establishes the foundation for

conditional simulation (also see chapter 3, chapter 10).

Given the (unconditional or conditional) pdf fX(x) of a random variable X the

(unconditional or conditional) mean or expectation of X are defined as:

where the notation E() and < > are interchangeable and stand for 'expectation of'.  The

(unconditional or conditional) variance of X is defined as:

From the definition of the variance of X it follows that

The variance is the second-order central moment.  Higher order central moments of X are

defined as:

The skewness of X is obtained for n=3,  and the kurtosis of X for n=4.  In most of the
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(2-23)a

(2-23)b

applications in this study, it is assumed that a random variable has a Gaussian (or normal)

distribution function (2.5).   Using the above definitions of the various moments,  it is seen that

the mean of  X corresponds to the parameter : in the Gaussian pdf, the variance of X

corresponds to the parameter F² in the Gaussian pdf, the skewness is 0, and the kurtosis is 3F4.

If one can reasonably assume  that a random  variable is Gaussian distributed, the actual form

of the pdf is completely determined by the first two moments, the mean and the variance of X.

Before proceeding to describe random vectors and random processes, another important

concept related to random variables must be introduced: functions of random variables.

Functions of random variables - like the random variable itself - allow the derivation of

probabilities of new random  variables through functional relationships.  Suppose that g(x) is

a function of the real variable x.  Then the random variable Y defined by

is also a random variable, since Y is also a function on the original sample space S through

if the domain of the RV Y is X.  Depending on the nature of g(X) various methods exist to

derive the probability of Y from the probability of X.  In this study, partial differential equations

describe the relationship between most random variables of interest.  In subsequent chapters

methods are introduced to derive the pdf of Y from a given pdf of X if Y and X are related

through a partial differential equation.

2.4.2 Random Vectors

So far, only one random variable and its probability distribution has been considered.

Now we turn to the probability measure  (probability distribution) of two or more random

variables X1, X2, ..., Xn.  Note that throughout this study vectors are denoted by boldface letters.

A vector X = (X1, X2, ..., Xn)
T  (T indicates the transpose)  is called a random  vector if it is a
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(2-24)

(2-25)

(2-26)

(2-27)

finite collection of n random variables X defined on a common probability space (S,F,P)  The

range space of a random vector is B(ú)n or a discrete subset of B(ú)n, since the vector has n

dimensions.  The probability measure PX of a random vector is different from the probability

measure PX of a random variable, since a vector is the joint outcome of several different

measurements.   Hence, a  "joint probability distribution"  of the random vector X must be

defined.  The formal definition of the cumulative probability distribution function FX(x) of a

random vector X  with a continuous range space is:

The corresponding joint pdf fX(x) is obtained by taking the total derivative of FX(x):

The joint cumulative distribution describes the probability that the random vector X takes on a

particular value x = (x1, x2,..., xn)
T or less.  But the joint probability distribution can also be used

to derive the probability distribution PXi of a random variable Xi within a random vector.  This

is called the "marginal probability distribution" fXi(xi) i.e., the probability distribution of the

random variable Xi without regard for the outcome of any of the other random variables in the

random vector X:

The marginal probability density function fXi(xi) is found by integrating the joint pdf over all

random variables other then Xi:
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(2-28)

(2-29)

(2-30)

Equivalent definitions for the marginal and joint distributions can be derived for discrete range

spaces of X  (i.e. if the components X of X can take on a finite discrete set of real numbers

only).

Like for random variables, mathematical models  are used to  describe the joint pdf of

X.  In section 2.2  several pdfs are introduced for single random variables.  An important joint

pdf is the "joint Gaussian" pdf or "multidimensional Gaussian" pdf, where "multidimensional"

refers to the dimensions of the random vector.  The formal definition of the multidimensional

Gaussian pdf involves two parameters similar to the two parameters : and F² in the one-

dimensional  or univariate Gaussian pdf:   If m is a n-dimensional  column vector and C a n by

n matrix that is  symmetric and positive definite, then a joint pdf is said to be Gaussian if it has

the following form for any m and C:

where detC is the determinant of C.  The vector m corresponds to the mean of the random vector

X.  It can be shown that each entry Cij = Cji (symmetry!) can be found by determining the

"covariance" of Xi and Xj.  The covariance is a second order moment defined as:

Then Cij = Cov(Xi, Xj).  The covariance is a measure of the physical correlation between the

random variable Xi and Xj e.g., between the saturated hydraulic conductivity and the matric

potential in a soil core.  Notice that Cov(Xi, Xj) = Var(X) for i=j.

If the random variables of a random vector are independent of each other (2-8) then the

joint pdf for  continuous random  variables becomes  simply the product of the marginal

probability density functions:
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Similarly, the joint pmf for a discrete random variable is the product of the marginal pmf.  The

probability distributions related to these independent pdfs and pmfs are called "product

distributions".  If the pdf or pmf for each of the independent random variables in the random

vector are the same, the vector is called an "independent and identical distributed" (i.i.d.)

random vector.

Like for random variables, one may define a function of a random vector:

where Y is a new random variable.  This definition is then used to derive the probability

distribution of Y in terms of the joint probability distribution of X.

Random vectors are used in this study in two different ways that are mathematically

equivalent, but differ in their physical interpretation.  Random vectors of random variables may

represent different physical properties such as X=(K,h,1)T, where K denotes the saturated

hydraulic conductivity, h the matric potential, and 1 the moisture content of the soil core

mentioned in previous examples.  If, for example, this random vector has a joint Gaussian pdf,

the joint probability measure is determined by specifying the mean m = (mK, mh, m1)T of each

of the random variables and the (cross-) covariance C between each of the physical properties

in the same soil core.

Alternatively, a random vector may represent the same physical property at different

spatial locations in the soil: X=(1(x1),1(x2),...,1(xn))
T.  Since each spatial location - statistically

speaking - represents the outcome of a joint  experiment with its  own (marginal) probability

space Sx, each physical property at each spatial location x forms a random variable by itself.

If, for example,  the water content throughout a  field site possesses a joint Gaussian pdf, then

the joint probability distribution is uniquely determined by the mean vector m = (<1(x1)>,

<1(x2)>,...,<1(xn)>)T of 1 at each location separately (i.e. it doesn't have to be the same

everywhere!), and the covariance matrix C1 that defines the covariance between the 1s of each

location pair.
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While it is quite obvious that the saturated hydraulic conductivity and the soil matric

potential at a location x in a soil domain are two different random variables with different

marginal probability spaces, it must be emphasized here that without further assumptions the

saturated hydraulic conductivity at one location is NOT the same random variable as the

saturated hydraulic conductivity at another location and does not a priori possess the same

marginal probability space!  Similarly, the random variable "soil moisture" 1 at a time t1 is not

considered to be the same as the random variable 1 at a time t2.  Also note that there generally

is an infinite number of either discrete or continuous physical locations x or times t, while the

different physical properties are always a finite number of discrete variables.  To distinguish

between  random vectors of different physical variables and random vectors of random variables

in space and/or time, the terms 'random process' or 'random field' are used for the latter

interpretation.

2.5 Random Processes and Random Fields

2.5.1 Definition

Random processes are an infinite collection of random variables where the random

variables are indexed on a discrete or continuous "index set" I.  In our applications this index

set always corresponds to time t or spatial location x.  The spatial location x is always denoted

as a (lower case, bold print) vector of spatial coordinates and must not be confused with the

probability PX(x) that the random variable X takes on a value x or the joint probability PX(x) that

the random vector X takes on a vector value x!

The term "random process" or "stochastic process" is mostly used if the index set is the

time variable, while the term "random field" is commonly applied for index sets of spatial

locations.  Formally, a random process is an indexed family of random variables {X(o,t); o0S,

t0I} = Xt = X(t) defined on a common probability space (S,F,P).  Equivalently a random field

is denoted as an indexed family of random variables {X(o,x); o0S, x0I} = Xx = X(x) on a
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common probability space (S,F,P), where I= ún or a discrete subset of ún, n#3, indicates the

spatial dimensionality.  Since the only difference in the definitions of random fields (random

processes)  and random vectors  is the number  of components (infinite vs. finite family of

random variables) equivalent probability measures are defined for random fields and random

processes: process cumulative distribution functions, process density functions, marginal

cumulative distribution functions and marginal probability density functions.

Realizations (samples) of random fields are a basic element of the numerical stochastic

analysis as will be shown in subsequent chapters.  Often, the realizations themselves are referred

to as random fields.  To avoid confusion and to distinguish the random fields from random

realizations of random fields subsequent chapters will use the term "random field variable"

(RFV) to denote random fields that are families of random variables as defined above.

In numerical applications, random fields are always discretized in a finite domain.  How

do these finite discrete subsets relate to the infinite continuous random field?  The "Kolmogorov

extension theorem"  shows that given  a consistent family  of finite-dimensional (joint)

distributions

there exists a random process or random field {X(x), x 0 I} described by these distributions.

The term  "consistent" distribution  refers simply  to fact that the joint distribution and the

marginal  distributions must  be consistent  in that  one can  be derived from the other through

(2-26).  This also includes the condition that "boxes" in n-space have positive probability.

Probability distributions are consistent, if they are described, for example,  by the

multidimensional Gaussian pdf.  From the above theorem it then follows that a random field

{X(x), x 0 I} is a "Gaussian random field" if ALL finite collections of samples of the random

field (X(x1), X(x2),...,X(xn))
T are Gaussian random vectors i.e., satisfy (2-28) and the conditions

stated for m and C.

To further distinguish between the covariances of the same physical property at different
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times or locations (covariance of a random field or random process) and the covariance between

two different physical properties at the same or at different locations, the latter is from now on

referred to as a "cross-covariance".

Random fields and processes -  like random vectors  - may consist of independent

random variables.  If each independent random variable possesses the same pdf or pmf, the

random field (process) is called an i.i.d. random field (process).  Note that for independent

random variables <Xi Xj> = <Xi><Xj>.  The the covariance of two uncorrelated random

variables is 0.

 

2.5.2 Stationarity and Ergodicity of Random Processes

All basic probabilistic concepts encountered in the study of heterogeneous porous media

via stochastic analysis are now defined.  Before continuing with the introduction of two rather

intriguing properties  of random fields, two important questions are raised:  What is the

justification for treating porous medium properties as random variables?  And how does the

heterogeneous environment of a porous medium i.e., a soil cross-section, a field-lysimeter, the

unsaturated zone underneath a particular field site, or the aquifer underneath a certain region,

relate to the properties of random variables and random fields? 

While the first question is often posed, it fails to address the central problem of

environmental modeling, which is not the heterogeneity of natural systems, but the measurement

and/or estimation of the heterogeneous properties.  Indeed the porous medium as it exists can

be interpreted as being  completely deterministic i.e.,  there is nothing random about the

properties of the porous medium at any of its locations.  The genesis of the pore morphology

follows physical laws.  All derived porous properties such as the permeability and the water

content are also determined by physical principles.  Hence, the heterogeneity of the soil does not

in itself is completely deterministic.

The randomness lies  in the lack of knowledge,  and inability to acquire it fully, about
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what these porous medium properties exactly are.  Soil physical or chemical properties are

commonly determined by either an actual measurement of soil properties or by the intuitive,

graphical, or mathematical estimation of soil  properties from related data (inverse distance

interpolation, kriging, etc.).   Both  measurement and estimation are associated with errors.  The

(physically deterministic) errors occurring during the measurement and/or estimation process

have the properties of  random variables and thus allow a rigorous analysis with statistical tools.

This is the key to stochastic analysis and the bridge between reality and conceptual model.

Stochastic analysis in subsurface hydrology is about modeling the limitations of our knowledge!

How limited our knowledge is will in turn depend on the porous medium heterogeneity.  The

focus of this study are the estimation errors (and NOT the measurement errors) occurring in

predictions of soil water tension, soil water flux, and solute transport.  Without loss of generality

measurement errors are neglected.

The beauty of the stochastic analysis is that it provides both a best estimate of the

properties of interest (hydraulic conductivity, soil moisture, solute transport, etc.) and a

quantitative measure  describing the  uncertainty of the best estimate.  The probability

distributions encountered in stochastic modeling are essentially a reflection of the fuzziness or

uncertainty of our knowledge about the soil properties.  Hence, the justification for treating

porous media as  random fields lies NOT in  the physical nature of the porous medium (which

is deterministic)  but in the limitation of  our knowledge  ABOUT the porous  medium.  This is

not to say however that heterogeneity is unrelated to the statistical analysis.  Indeed, the

estimation error is a direct function of the soil heterogeneity:  If the porous medium is relatively

homogeneous, the properties of the soil at unmeasured locations are estimated with great

certainty given a few sample data.  On the other hand, if the porous medium is very

heterogeneous and soil properties are correlated over only short distances, an estimation of the

exact soil properties at unmeasured locations is associated with large errors.  Hence, the

heterogeneity of the soil is a measure of the estimation error or prediction uncertainty.

The second question addresses the practical problem of translating field measurements
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(a "sample") into statistical parameters defining random variables i.e., into a probability space

that is representative of the spatial variability and hence the estimation error with regard to the

physical property  of interest.   This leads  to the general problem of deriving "ensemble"

statistical parameters of random fields (which consist of an infinite number of random variables,

each of which  has an infinite  number of possible outcomes) from a small sample that gives

ONE measurement of each of an INFINITE number of random variables.  At the most, using the

definitions of the mean, the variance, the (cross-)covariance, and the higher order moments (2-

22) "sample"  statistical parameters and a "sample  probability distribution"  or histogram of the

measured random field parameters can be computed.  The sample statistics give a quantitative

estimate of the degree of heterogeneity in the porous medium, which also is an estimate of the

expected estimation error.  Then two problems need to be addressed:

1. The sample taken from  measuring MANY random variables ONCE must be related

to the MANY possible outcomes of any particular ONE random variable X(x) at

location x.

2. The sample  statistics must  be related  to the ensemble statistics of the random

field.

These two points are  crucial to the stochastic  analysis and in particular the first one must not

be underestimated.   Recall that a random field consists of an infinite number of random

variables, each of which  has its  own marginal pdf.   The random variables in a random field

need not have  identical probability distributions.   As will be  seen in chapter 10,  estimates of

soil properties that are conditioned on field data are indeed always random fields with random

variables whose pdf is a function of the location in space, since the uncertainty about field

properties may vary from location to location (depending on whether the estimation is close to

a measurement point or not)!

First, the question is addressed of how the measurement sample of different random

variables (same  physical property  at different locations in the same single realization of a

random field, namely the actual field site) can be taken to be equivalent to many measurements
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of the same random variable (same physical property at one location in many different

hypothetical realizations of the  site including the actual one).  The definition of a random field

as a collection of random variables in space says a priori nothing about the spatial relationship

of the marginal probability distributions of the random variables that make up the random field,

except for  the condition  that they  must form  a proper joint probability distribution.  But an

entire probability distribution for each and every random variable in the random field must be

found.   This poses a severe dilemma for the statistical treatment of many earth science

problems:  Only a single realization of the random field is available since all regional and

subregional geologic,  pedologic, and other environmental phenomena are unique and do not

repeat themselves elsewhere.  This is a very different problem from flipping a coin, an

experiment that can easily be repeated (and measured) as many times as necessary to determine

its sample probability distribution.  To circumvent the dilemma it is assumed that the marginal

probability distribution function of each random variable is identical at every location in the

random field.   In other words,  one must assume  that the likelihood that a physical property

takes on a particular value B, is exactly the same everywhere in the field.  This implies that the

mean, the variance, and the other moments of the probability distribution are identical for every

location in  the random field.  This property is called "stationarity" or "strict stationarity".  A

formal definition is given:

where B is an event of the Borel field B(ú).  In all the applications of this study, a weaker form

of stationarity is assumed: "second order stationarity" or "weak stationarity" or "wide-sense

stationarity", which requires that the mean and covariance (but not any higher order moment)

are identical everywhere in the random field:
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Two important examples of strictly stationary processes are the i.i.d. random field, which by

definition has identical distributions for each of the random variables in the random field.  A

Gaussian random field is called weakly stationary if the mean :X(x)=: for all x, and the

covariance Cov(x1,x2)=Cov(>), > = x2 - x1 for all x1, x2 on the index set I.  Since the Gaussian

random field is completely defined by its first two moments, all higher order moments of the

Gaussian random field must be stationary if the first two moments are stationary.  Hence weakly

stationary Gaussian fields are also strictly stationary.

The existence of stationarity in porous medium properties cannot be proven rigorously

at any single field site.  Data are often sparsely distributed.  In the best of cases a linear or higher

order trend can reasonably be removed from the data.  For all practical purposes, it is therefore

convenient to hypothesize that the field site is a realization of a weakly stationary random field

(after removing an obvious trend).  This is a reasonable assumption in many field applications.

Once this working hypothesis is postulated, the sample of measurements at different locations

is treated as if it were a sample of several realizations of the same random variable (i.e. at the

same location).

Next, the sample moments must be related to the ensemble moments of the random

variable.  This problem is treated by stochastic theorems related to convergence and to the law

of large numbers (cf. Gray and Davisson, 1986).  The definition of "convergence in the mean

square" is:  A sequence of random variables Xi, i=1,2,... (e.g. a random field) converges in the

mean square to a random variable X if

Convergence in the mean square sense is mathematically also written as

where l.i.m. stands for "limit in the mean".  To solve the problem of relating sample statistics

to ensemble parameters it is necessary that the sample statistics taken from a single realization
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indeed converge to the ensemble statistics of the random variables as the number of samples is

increased:

A random field or random process that satisfies this theorem is called "mean ergodic".  A

sufficient condition for weakly stationary random fields to be mean ergodic with a limiting

sample average :X  is that CX(0) < 4 and that limn->4CX(n)x) = 0.  In other words a weakly

stationary random field is mean ergodic, if the variance is finite and if random variables are

uncorrelated at large separation distances (Papoulis, 1984).

Like stationarity, mean ergodicity cannot be measured in a single field site i.e., a single

realization of the hypothetical random field.  Rather mean ergodicity is taken as a working

hypothesis i.e., it is assumed a priori that the measured sample statistics converge in the mean

square to the true ensemble parameters as the number of samples increases.

Note that the above definition of a mean-ergodic random field is only a special case of

a more general ergodic theorem that states that the sample expectations converge to a constant

(not necessarily the mean of any random variable in the random field) as the number of samples

increases.  Ergodic processes need not be stationary (e.g. a random field with underlying

periodic trend) and similarly stationary random fields need not be ergodic (the sample

expectations may not converge as the sample size increases such as in the flipping a coin

experiment).  For all applications in this study, however, both weak stationarity and mean-

ergodicity are postulated as working hypotheses.  Thus limited knowledge of a deterministic

reality can be related to an abstract probability space.  Once the step has been made from the

sample to the probability space (via the working hypotheses stationarity and ergodicity) the tools

available from the definitions of probability theory as stated in the previous sections are used

to make probabilistic predictions about the current status of the porous medium at locations

other than those from where measurements are available and to make probabilistic predictions
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about the future status at both unmeasured and measured locations.  It should now be clear that

a "probabilistic prediction" will not determine an actual value of a physical property.  Rather

it will give the moments (or probability distribution) of the random variable defined on the error

of estimating a physical property.

Finally it is emphasized that the assumption of mean ergodicity (2-38) does not imply

identity of the sample mean mX based on n samples of a random variable X and the ensemble

mean :X.  For the same reason, the sample variance varX or sample covariance covX are not

identical to their respective ergodic limit FX
2 and CX.  The difference between the sample

statistical parameters of X and its ensemble moments is generally referred to as parameter

estimation error and will subsequently be neglected.  Such parameter estimation errors, however,

are recognized to be an important source of uncertainty in field applications of the stochastic

approach.

2.5.3 Conditional Random Fields and Kriging

In section 2.3 the  conditional probability space  of random variables was introduced.

The Bayesian theorems stated there are readily extended to random fields.  Conditional

probabilities in random  fields are  defined for separately  for each random  variable, given the

exact outcome of other random variables.  In this study, the conditional first and second moment

(conditional mean and covariance) of a random variable are of particular interest.  These two

moments are sufficient to describe the conditional pdf if the underlying unconditional joint

probability distribution is Gaussian.

Recall the (multivariate) joint cumulative probability distribution function

FX(x1,x2,x3,...,xn) is defined as:
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(2-41)
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(2-43)

(2-44)

with the unconditional expectation (first moment)

and the unconditional covariance (second moment):

where xi' = xi - <Xi> is the perturbation around the mean.  The variance FX
2 is defined by (2-41)

for i = j.  The joint pdf is the derivative of the joint cumulative distribution function.  Assume

that m datapoints of the n datapoints of interest were already measured.  Then the marginal

probability density function fX(xm+1,xm+2,...,xn) of the unknown data (RVs) Xm+1,...,Xn in the

unknown ensemble of data X1,...,Xn is defined by (see 2-27):

With the help of these two distribution functions the conditional probability density function

fX(xm+1,xm+2,xm+3,...,xn|x1,x2,x3,...,xm) of the unknown data is defined given the actual values for

the data at points x1,...,xm:

The conditional expectation <Xi>
c of Xi is defined as:

and the conditional covariance (second moment) by
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To make complicated  matters simple,  it is  assumed that the unconditional joint pdf is

multivariate normal and  hence fully  characterized by its first and second moments, the mean

and the covariance.  For practical reasons it is also assumed that the unconditional random

process is stationary i.e.,  the first and second moment are not functions of the spatial location

x.  It is important to understand,  however, that the conditional random process is NOT

stationary, even if the unconditional probability field is stationary.  In other words, even if the

unconditional  mean  <X>  and variance  F²X are  independent of location x,  the conditional

mean <Xi>
c,  the conditional variance Eii, and the conditional covariance Eij are functions of

location xi.

Matheron (1971) contributed extensively to the theory of random variables in space, and

developed a "best, linear, unbiased estimator" to estimate random variables in space from a few

known data, which has become widely known as "kriging" (c.f. Journel and Huijbregts, 1978).

Essentially his  analysis includes a  derivation of the conditional  moments of the  random

variables based  on the concept of  "regionalized variables" (Matheron's term for random

variables in space).  If the random field is Gaussian, then the algorithm for determining the

conditional  expectations  in a random field is  identical to kriging.  Kriging is one of  the main

tools in geostatistics (Dagan, 1982).  Kriging techniques have been developed for second order

stationary fields with known constant mean (simple kriging), for intrinsic stationary fields i.e.,

random fields with constant but unknown mean and weakly stationary increments (Xi - Xj)

(ordinary kriging),  for intrinsic stationary random  fields with an underlying  trend of  known

order (universal kriging), and for some non-Gaussian random fields (log-kriging, probability

kriging, disjunctive kriging,  and indicator kriging)  (Matheron, 1971; Journel, 1983;  Armstrong

and Matheron, 1986; Journel, 1988; Kim, 1988).  For the purpose of this study, it will be

convenient to  restrict ourselves to the case of a weakly stationary random process (random
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field) with a constant unconditional mean <X> and finite unconditional variance F²X (simple

kriging).  The conditional expectation <Xi>
c (2-44) can then be computed by a linear estimate

<Xi>
k (i.e. <Xi>

k is a linear function of the given data) such that the mean square of the

estimation error <e²>, e = (X - Xk) is minimized (c.f. Papoulis, 1984, p.167ff.).  The estimation

of the conditional expectation is given by (Dagan, 1982):

where x1 is the vector of known data of the RVs X1 = (X1,...,Xm)T (at locations x1,...,xm) and X2

is the vector of unknown RVs (Xm+1,...,Xn)
T (at locations xm+1,...,xn).  In the geostatistics

literature, <X2>
k is referred to as the (simple) kriging estimator (Journel, 1988).  The weights

8ij in the  weight  matrix  721 are  obtained by minimizing <e²>,  which  leads  to a  linear system

of equations called the (simple) kriging system of equations:

where C11 is the covariance matrix between the known datapoints of X1 and C12 is the covariance

matrix between  known datapoints of X1 and  points of  unknown data X2.  The kriging system

has a solution only if C11 is a positive definite matrix (Journel and Huijbregts, 1978).  To assure

positive definiteness,  the sample covariance data obtained from analysis of x1 are fitted to an

optimal (i.e. best-fitting), valid (i.e. assuring positive definiteness) functional form of the

covariance, such as the exponential, spherical, or gaussian models (Isaaks and Srivastava, 1989).

The minimized "estimation error covariance" or "mean square error" corresponds exactly to the

conditional covariance or simple kriging covariance and is given by:



Harter Dissertation - 1994 - 55

(2-48)

Note, that the individual entries in the conditional covariance or error covariance matrix E22 are

equal to or smaller than the entries in the unconditional covariance matrix C22!

2.6 Spectral Representation of Random Variables

In the analysis of random processes (time series), "spectral analysis" has been an

important tool for many different tasks and is a well-established field of probability theory (c.f.

Priestley, 1981).   Recently, spectral analysis  has also become important for the study of

spatially variable processes (random fields).  Introduced into the field of subsurface hydrology

by Gelhar et al., (1974)  to study groundwater systems, it has since been applied to a great

variety of subsurface hydrologic problems (e.g. Bakr et al., 1978;  Gutjahr et al., 1978;  Gelhar

and Axness, 1983;  Yeh et al., 1985a,b;  Li et al, 1992).

In principle, spectral analysis is founded on the concept that a single realization of a

random process (RVs defined on a 1-dimensional time index) or of a random field (RVs defined

on a n-dimensional location index, n#3) is nothing but a superposition of many (even infinitely)

different (n-dimensional) sine-cosine waves, each of which has different amplitude and

frequency.  Then any particular realization of a random field can be expressed either in terms

of a spatial function or in terms of the frequencies and amplitudes of the sine-cosine waves and

their amplitudes (called 'Fourier series' of a discrete process and 'Fourier transform' of a

continuous process).  The latter are collectively called the "spectral representation"  of the

random field.  The spectral  representation of a  single random field  realization can  intuitively

be understood as a field of amplitudes, where the coordinates are the frequencies of the sine-
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cosine waves.  In other words, instead of an actual value for each location in space, the spectral

representation gives an amplitude for each possible frequency (wave-length).  Note that in n-

dimensional space, n#3, sine-cosine waves are defined by n-dimensional frequencies (with one

component for  each spatial direction) and therefore the spectral representation of a n-

dimensional random field is also n-dimensional.

The spectral representation is defined deterministically i.e., it is not defined in a

probability space and has by itself little to do with a stochastic solution:  Each realization of a

random field has its own spectral representation, since the amplitudes of the underlying sine-

cosine waves are different for each realization.  But obviously and following the rules already

established in the previous sections the amplitudes of the sine-cosine waves can be defined as

random variables  with the frequency domain as the index field.  In other words, a function of

a spatial random field (which is defined on a probability space) is established rather than a

function of a realization of a random field (which is a deterministic function).  One then deals

with the probability space of the spectral representation, which in turn also is a random field,

but defined in the frequency domain. Statistically speaking, the probability space of the spatial

random field is mapped onto the probability space of the spectral random field.

The advantages of representing a random field in terms of its underlying spectral

properties i.e., in terms of the probabilities of amplitudes and frequencies of the "waves"

composing a random field, are many.   But within the framework of this study two properties are

particularly important:

1. The spectral representation of a spatially correlated random field i.e., of random

variables with a joint probability distribution is - under certain conditions - a random

field with random variables (amplitudes) that are uncorrelated i.e., they are completely

defined by their univariate marginal distribution, the analysis of which is much easier

than that of random variables with a multivariate joint distribution function.

2. Under certain conditions, the spectral transformation of a partial differential equation

is a polynomial whose solution is found much easier than the solution to the partial
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differential equation in the spatial domain.

In this study, the tools of spectral analysis are used for three different but related tasks:

1. in a probabilistic sense to analytically derive the joint probability distributions of

functions of random fields,

2. in a deterministic sense to numerically generate realizations of random fields of spatially

variable parameters,

3. in a deterministic sense to obtain explicit solutions to partial differential equations

defined by a particular (deterministic) realization of random fields.

In this section, the basic theorems of spectral analysis are introduced.  In the following chapters

they are applied to generate random fields (chapter 3), and to derive the joint probability

distribution functions of parameters of interest in unsaturated flow and transport by applying

spectral analysis to the governing unsaturated flow equation (chapter 4).  Finally, in chapter 7

a method is introduced that combines spectral and numerical analysis to efficiently obtain

solutions of the unsaturated flow equation given a particular random field realization of the

constitutive parameters.

For reasons discussed earlier, this study is solely concerned with stationary random

fields.  The spectral analysis of stationary random fields has been well-established in the

literature and many fine texts can be found on the general subject (e.g. Priestley, 1981).  Here

only the basic  theorems are  introduced, which are necessary to understand the techniques

applied to the stochastic analysis of flow and transport processes.  For complete proofs and a

broad introduction to the topic the reader is referred to the established literature (c.f. Priestley,

1981).

The spectral representation of a single realization X(x) of a random field with mean 0

is formally defined in terms of the Fourier-Stieltjes integral (Wiener, 1930):
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where the integral is n-dimensional, n#3, and Z(k) is a (complex valued) function, called the

Fourier-Stieltjes transform of X(x).  The Fourier-Stieltjes integral must be chosen over the more

common Fourier-Riemann integral

where g(k) is the Fourier transform of f(x) since the Fourier-Stieltjes transform Z(k) of the

random field X(x) is generally not differentiable such that dZ(k) = z(k) dk.  Z(k) can be

understood as an integrated measure of the amplitudes of the frequencies between (-4, k]

contributing to the realization X(x).  

As already mentioned above, Z can also be interpreted as a random field consisting of

random variables Z(k) defined in the frequency domain, where the random field Z is a stochastic

function of the random field X i.e., each realization Xi is mapped into a realization of the

spectral representation Zi.  In this probabilistic sense (2-49) essentially expresses the fact that

"(virtually) any stationary [random] process [random field] can be represented as (the limit)

of the sum of sine and cosine functions with random coefficients dZ(k), or more precisely, with

random amplitudes |dZ(k)| and random phases arg{dZ(k)}" (Priestley, 1981, p.245).   The new

probability space (SZ, FZ , Pz) of the random variables Z(k) in (2-49) has several very important

properties:

The first property states that the mean <dZ(k)> of the random variables dZ(k) is equal to the

Fourier transform of the mean of the random variables X(x).  In subsequent applications, only
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zero-mean random processes are considered, hence the spectral representations are also of zero

mean.  The second property defines the variance (S(k) dk) of the random variable dZ(k).  The

term S(k) dk is a measure of the average "energy per unit area" or "power" contribution of the

amplitude of a frequency k to the random field X(x).  S(k) is called the "spectral density" or

"spectrum" of the random field X.  S(k) depends purely on the probabilistic properties of the

random field X(x) and it can be shown that it is simply the Fourier transform of the covariance

C(>) of X.  The third property states that the increments dZ(k1) and dZ(k2) at two different

frequencies k1 and k2 are uncorrelated.  Such a random field is also called an "orthogonal"

random field.

Through (2-51) the first two moments of the random field dZ(k) are defined solely in

terms of the first two moments of the stationary random field X(x).  Hence, if the first two

moments of the random field X(x) are known, then the first two moments of its spectral

representation dZ(k) are known.  Note that the spectral representation dZ(k) of a weakly

stationary random field X(x) is only stationary to first order:  The mean <dZ(k)> is constant

(first property), but the variance S(k) of the random field dZ(k) is a function of the location k

in the frequency domain (second property).

In summary of this last section, a new probability space, called the spectral

representation of a random field, was defined on the known probability space of a random field.

The mapping of a stationary, correlated random field X into its spectral representation dZ

provides the important advantage of creating an equivalent dZ to the random field X that

consists of orthogonal or uncorrelated random variables!
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