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3.  RANDOM FIELD GENERATORS

3.1 Introduction

The generation of spatially correlated samples of random fields plays a fundamental role

in the numerical  analysis of stochastic functions - whether these are 1-, 2-, or 3-dimensional.

The purpose of random field simulation is to create numerical samples or "realizations" of

stochastic processes with well-defined properties.  The term "random field generator" is actually

improper, because random fields are by definition probability spaces (see chapter 2) and can

therefore not be discretely generated.  For ease of reading and in reference to many other

publications that deal with the generation of random realizations of a random field, the term

"random field" is in this and all subsequent chapter used interchangeably with the term

"realization".  The random fields as defined in section 2.5.1 are henceforth referred to as random

field variables (RFVs).

The simplest and most commonly available form of simulation is the random number

generator on a calculator or computer.  These readily accessible simulators generate

independent, uniformly distributed random numbers i.e., samples of a single random variable

X with a uniform, univariate distribution (e.g. Press et al., 1992).  If X is not uniformly

distributed it is a relatively easy task to transform these random numbers such that they follow

any other desired univariate distribution.  

The simplest case of a random field variable (random process) is an orthogonal RFV,

which consists of random univariate samples at each location.  This can be implemented easily

with any good random number generator.  A particular challenge arises, however, when the

random variables Xi=X(xi), Xj=X(xj) (i�j) are dependent i.e., when they are (spatially) correlated

and defined  through a joint  or multivariate distribution.   Not only do  the generated random

fields have to converge in the mean square to the desired ensemble mean and variance (and any

higher order moments if appropriate), they also have to converge in the mean square to the
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desired correlation structure as the number of samples increases.  In this chapter, algorithms are

introduced that generate such random fields.

In practice the joint probability distribution function is often inferred from field data

obtained at the site of interest.  The joint probability distribution is commonly described by

invoking the ergodicity and stationarity hypotheses discussed in the previous chapter and by

taking the sample mean and sample variance-covariance functions as the moments of the

underlying multivariate pdf.  To take full advantage of the field data the simulations must be

conditioned on the information known about the particular points in space, where measurements

were taken.  This amounts to the generation of random variables with a conditional joint

probability distribution function.  The ensemble of conditional realizations is a subset of the

ensemble of unconditional realizations.  The conditional subset consists of all those samples in

the unconditional set, that preserve the known data at the measured locations.  As shown in the

previous chapter the conditional joint distribution of the random variables is different from the

unconditional multivariate pdf.  The generation of conditional random fields therefore needs to

go beyond the capabilities of an unconditional random field generator.

In this chapter several popular random field generators (RFGs) are described and

compared.  Random number generators (RNGs) are also tested.  First an unconditional two-

dimensional random field generator based on spectral representation and a fast Fourier transform

is introduced.  A conditioning method based on kriging estimation is presented next.  The

statistical performance of the spectral random field generator (SRFFT) is compared with the

turning band method (TB), the matrix decomposition method (LU) and the sequential Gaussian

simulation method (S).  The numerical efficiency of these RFGs has been assessed elsewhere

(Tompson et al., 1989).
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3.2 (Unconditional) Two-Dimensional Random Field Generation by the Spectral

Method

The purpose of a random field generator is to transform an orthogonal realization

consisting of independently generated random numbers with a prescribed univariate distribution

into a correlated random  field with the desired joint probability distribution.   If the distribution

is Gaussian, the joint pdf is expressed by its first two moments, the mean and the covariance.

In the previous chapter a transformation was introduced that is ideally suited for building a

random field generator:  the spectral representation dZ of a correlated RFV X is itself an RFV

of independent random variables with a variance defined by the spectral density function of X,

S(k) dk.  Recall that the spectral density S(k) of  X is the Fourier transform of the covariance

function C(>) of X where > is the separation distance.  Hence, if random, zero-mean dZ(k) are

generated with a variance S(k) dk then their inverse Fourier transform yields a correlated

random field with  X(x) that have  zero-mean and the desired covariance function by virtue of

(2-51).  Random field generators based on Fourier transforms have first been introduced by

Shinozuka (1972, 1991).  Gutjahr (1989) describes a two-dimensional random field generator

based on a fast Fourier transform algorithm, which has been adopted for our study.

In the previous chapter the spectral representation of a continuous, infinitely large

random field was defined.   In the numerical generation of random fields,  however,  one is

limited both in the  extent of the random field and in the  number of points generated.   Hence,

(2-51) must be restated to accommodate finite random fields defined on a countable number of

discrete grid-points.  The following derivations are specifically for two-dimensional random

fields.  But the extension to higher dimensional random fields should be obvious and is straight

forward.

For the purpose of this study realizations are generated on a rectangular domain defined

over a regular grid centered around the origin with gridpoints being )x = ()x1, )x2)
T apart.  The

size of the domain is  defined by M )x such that the rectangle spans the area between  -M)x and
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(3-1)

(M-1))x and the number of gridpoints in the random field is 2M by 2M.  Since the spectral

representation of a stationary random field is only defined for an infinite domain, it is further

assumed that the random  field is periodic with period 2M  in both dimensions.   This has no

direct impact on the generated random field.  But it is a necessary assumption for the formal

derivation of its spectral representation, because the analysis of an infinite process can be used

for the generation of a finite random field.  There is another reason for choosing the assumption

of periodicity (after all, any other values for the random field outside [-M)x, (M-1))x]) could

have been assumed):  Periodic functions are known to have a discrete rather than a continuous

spectrum i.e., only a discrete set of frequencies contributes to the spectral representation of the

periodic stationary random field.  Hence, dZ(k) exists only for discrete k, for which it can be

generated such that <dZ(k)> = 0 and <|dZ(k)|²> = S(k) dk.

The discretization of X(x) limits the wavelengths "seen"  by the discrete random field

to all those that are at least of length 2)x i.e., to all (angular) frequencies k # 2B/(2)x).  Higher

frequencies cannot be distinguished from frequencies within this limit, an effect referred to as

"aliasing".  In other words, heterogeneities on a scale smaller than the discretization )x are not

resolved by the random field.  Similarly, the longest possible wavelength "seen" by a finite

random field is less than or equal to 2M)x i.e., the lowest (angular) frequency is )k =

2B/(2M)x), and all other frequencies k must be multiples of )k.  Hence, the spectral

representation dZ(k) of a finite, discrete random field X(x) with (2M)² gridpoints in 2-D space

is also a finite, discrete random field defined on a (2M)² grid in the 2-D frequency domain.  Note

that the discretization in X(x) determines the size of the field of dZ(k), while the finite size of

X(x) determines the discretization of dZ(k).  For discrete dZ(k) the Fourier-Stieltjes integral (2-

49) becomes a Fourier series such that

where z(k) are (complex valued) random Fourier coefficients with the same properties as dZ(k)

in (2-49), namely zero-mean, a variance F²z(k) = S(k) )k, and all z(k) independent for k1�k2.
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(3-2)

(3-3)

(3-4)

To ensure that X(x) is a real valued random field,  the z(k) field must be constructed

such that  

i.e., random numbers z(k) need only  be generated for one half the size of the rectangle.  The *

stands for complex conjugate.  Complex valued, Gaussian distributed z(k) for discrete kj,

j=1,(2M)²/2 are obtained by generating two independent Gaussian random numbers "j and ßj for

each kj, each with zero-mean and variance ½, and construct

for one half of the random field.  The other half of the random field is obtained through  the

symmetry relation (3-2).  It can be shown by inspection that the above construction of z(k)

satisfies the required properties (Gutjahr et al., 1989).  After constructing a field z(k) by the

above method,  which merely requires the generation  of independent Gaussian distributed

random numbers, the correlated random field X(x) is obtained by performing the Fourier

summation (3-1).

The double summation in (3-1) is most  efficiently done by a  numerical Fourier

transform technique called the "Fast Fourier transform" or simply FFT (Brigham, 1988).  FFT

algorithms can be  found in many computer libraries  (e.g. IBM, 1993)  and are described in

books on numerical mathematics (e.g. Press et al., 1992).  It suffices to say that FFT algorithms

essentially perform a transformation as (3-1), but in a computationally very efficient manner.

Most available FFT algorithms are written using the frequency u as argument instead of the

angular frequency k, where k = 2Bu.  Recall the following definitions of Fourier transform pairs

from chapter 2:
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(3-5)

(3-6)

(3-7)

(3-8)

(3-9)

(3-10)

Changing the variables of integration from k to u, where dk = 2Bdu, the above transform  pairs

become:
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(3-11)

(3-12)

(3-13)a

(3-13)b

Typical FFT algorithms also require that the summation in (3-1) is over the interval [0,2M-1]

rather than over the interval [-M,M-1].  Using the periodicity assumption z(m )k), m > M-1, are

obtained from:

Recalling that )k = (2B)/(2M)x) this leads to the following construction of the correlated

random field X(x) with entries X(n1 )x1, n2 )x2), 0 # n1, n2 # 2M-1:

where

with " and ß being zero-mean, independent, Gaussian distributed random numbers of variance

½.  For this study, random fields are generated using (3-13) with the SCFT2 subroutine in the

ESSL Fortran library to perform the FFT (IBM, 1993), and with the GAUSDEV and RAN2

subroutines from Press et al. (1992) to generate the random numbers " and ß.  The original

implementation of this random field generator was generously provided by Allan Gutjahr (1989).

3.3 Conditional Two-Dimensional Random Fields

Assume an array of measurements X1 = {x1,...,xm} is available and a two-dimensional

conditional random field must be generated such that at locations {x1,...,xm} the measured value
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(3-14)

of the random  variables X1 are reproduced with probability 1,  and such that  at all other

locations {xm+1,...,xn} the generated random numbers X2 = {xm+1,...,xn} have a sample mean and

sample covariance that converge in the mean  to the conditional mean <X2>
c and conditional

covariance E22 (see section 2.5.3), respectively, in the limit as the number of random fields

generated becomes infinite.

To implement the conditional random field generation, Delhomme (1979) used the

following approach based on work by Matheron (1973) and Journel (1974, 1978):  Initially, the

measured data X1 are  used to infer the moments (mean and covariance) of the unconditional

joint pdf of the random field.  Then an estimate of the conditional mean <X2>
k is obtained by

simple kriging (best linear unbiased estimate of the conditional mean, see section 2.5.3).  The

kriging weights 7 and the estimated conditional mean <X2>
k are retained for the subsequent

generation of conditional random fields Xs
c, which are constructed through the following

relationship:

where <X>k is the kriged random field given the simulated data X1s from the unconditionally

generated random field Xs.  Xs has a joint probability distribution defined by the measured

moments.  <Xs>
k is the simulated equivalent to <X>k: It preserves the data X1s in the

unconditionally generated random fields at and only at the locations {x1,...,xm}, where

measurements are available in the real field site as well, and of the kriged estimates <X2s>
k at

all other locations {xm+1,...,xn} given the  unconditionally simulated data X1s.   The difference (Xs

- <Xs>
k) is a realization es of a possible estimation error incurred by estimating the data Xs

through the kriged values <Xs>
k.  The simulated error is added to the originally estimated

conditional mean <X>k to obtain a possible conditional random field Xs
c.

The simulated estimation error es has the same conditional moments as the real

estimation error  e = (X - <X>c) because the unconditional pdfs of the real and the simulated

fields are identical  (neglecting the possibility of measurement and moment estimation errors),

and because the conditioning occurs at the exact same locations both at the field site and in the
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simulations  (Journel, 1974;  Delhomme, 1979).  Recall from (2-48) that the conditional

covariance  or error covariance E22  depends only on the location of the conditioning points x1

and on the unconditional covariance C, but not on the actual value of the conditioning data X1!

The unconditional random field generation and the kriging of the generated random field

from the  simulated  measurement  data  are  repeated  for each realization.   Each simulation

will yield a random field of estimation errors es, which can be added to the kriging estimate of

the real data to obtain a conditional random field.  For a large number of samples thus obtained,

the sample variance of X2s(x2) will converge in the mean square to the true conditional variance

or  kriging variance  of X2(x2)  as shown by Delhomme (1979).  It is obvious that this

conditioning technique is independent of the method used to generate the unconditional random

field and is as such unrelated to the spectral random field generator.  The advantages of using

this method  together with  the spectral random field generator will be discussed in chapters 7

and 10.

3.4 Alternative Methods of Random Field Generation

3.4.1 Turning Bands Method

The turning bands method was first proposed by Matheron (1973) to simulate

unconditional random fields.  Detailed descriptions  of  the  turning  bands  method  can  be

found elsewhere (e.g. Mantoglou and Wilson, 1982;  Brooker, 1985;  Mantoglou, 1987;

Tompson et al., 1989).   For completeness,  a brief outline  of the  structure of  the turning  band

method  is given.

The principal advantage of the method is that it reduces the generation of a two- or

three-dimensional, random, spatially correlated process to the generation of one-dimensional,

correlated line processes.  The reduction in dimensionality is made possible by the fact that the

transformation  from a 3- or 2-dimensional covariance function into an equivalent one-

dimensional covariance function can be uniquely defined (Matheron, 1973;  Mantoglou and
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(3-15)

Wilson, 1982).  After determining the equivalent 1-dimensional covariance, a one-dimensional,

multivariate process Y(x) can be generated along a finite line by using an appropriate

autoregressive or moving average algorithm (Bras and Rodriguez-Iturbe, 1985) or 1-dimensional

spectral methods similar to the one described above (Mantoglou, 1987).  To obtain the 2-

dimensional random field, the one-dimensional simulation is repeated on a total of 16 (or more)

equally spaced lines intersecting at their midpoints.  Each of these lines is divided into small,

discrete  intervals of equal size.  One random number is generated for each interval.  The random

value X(x)  of a realization at any point  x is computed by averaging the 16 corresponding line

values:

where j is the line number and xj is located on line j such that x is orthogonal to xj with respect

to line j.

Conditional simulations with the turning bands method were among the first in

hydrologic applications (Delhomme, 1979) and the method used is identical to the one described

in section 3.3. for the spectral random field generator, since the actual conditioning is

independent of the method used for unconditional random field generation.

3.4.2 Matrix Decomposition

3.4.2.1 Unconditional Simulation by Matrix Decomposition

An elegant approach to simulating  unconditional as well  as conditional random fields

is the matrix decomposition method (Clifton and Neuman, 1982; Davis, 1987; Alabert, 1987).

Again, it  is assumed that a valid unconditional covariance model is given (satisfying the

conditions stated for (2-28)).  The covariance between each two points in the random field

domain is  computed prior to the random field generation and stored in an unconditional
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symmetric covariance matrix C.  For a random field consisting of n points, C has a dimension

of n2.  Furthermore, it is assumed that the unconditional expected value <X(x)> is zero.  Using,

for example, the Cholesky algorithm for symmetric, positive definite matrices, the covariance

matrix can be decomposed into a lower triangular matrix L and an upper triangular matrix U:

C = L U L = UT (T indicates the transpose operator) (3-16)

The product of the lower matrix L and a vector " of random, uncorrelated, univariate normally

distributed random numbers "i, i=1,...,n with zero mean and unit variance will then give a

simulated random field Xs with the desired mean and covariance:

L " = Xs (3-17)

Proof :

<Xs> = <L "> = L <"> = 0 (3-18)

Cs = <Xs Xs
T> = <L " (L ")T> = 

<L " "T LT> = L I U = L U = C (3-19)

(I is the identity matrix)

After generating and decomposing the covariance matrix C once, any new realization of X is

simply obtained by generating a new sample of the random vector ", which can easily be done

with any good random number generator.  Note that the method is independent of the

dimensionality of the random field and that the covariance need not be stationary.  Only 1st

order (mean) stationarity is required for this method.
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3.4.2.2 Conditional Simulation by Matrix Decomposition

The procedure can readily be extended to implement conditional simulations (Clifton

and Neuman, 1982; Davis, 1987).  Again X1 is a vector of known data-values and X2s are the

unknown random values that are conditionally simulated.  The covariance matrix and its

decomposition (3-16) is expanded in the following form:

  C11  C12            L11   0    U11  U12

C = � C21  C22�   =    � L21  L22� � 0     U22 � (3-20)

that is, the following four equations:

C11 = L11 U11 = L11 L11
T (3-21)a

C12 = L11 U12 = L11 L21
T (3-21)b

C21 = L21 U11 = L21 L11
T (3-21)c

C22 = L21 U12 + L22 U22 (3-21)d

and as shown for the unconditional simulation (3-17):

           L11   0        "1            X1

         � L21   L22�   � "2  �  =  �   X2s
c� (3-22)

However, X1 is known and "1 need not be generated!  Instead, the values "1 are computed by

solving the first of the two equations in the matrix (3-22):

"1 = L11
-1 X1 (3-23)

where L11 and X1 are given.  "2 is generated in the same way as " in the unconditional

simulation.  Then the conditional values X2s
c are computed by solving the second of the the two

equations in (3-22):

L21 "1  +  L22 "2  =  X2s
c (3-24)

The procedure is further simplified by expressing all terms in (3-24) as functions of L11, the

covariance submatrices of C, and the known data array X1:

L21 = C21 U11
-1 = (U11

-1)T C12
T = L11

-1 C12 (3-25)

L22 U22 = C22 - L21 U12 = C22 - L11
-1 C12 (L11

-1 C12)
T (3-26)
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Collecting (3-23), (3-25), and (3-26) in (3-24), the conditional simulation becomes:

X2s = L11
-1 C12 L11

-1 X1 + L22 "2 (3-27)

Thus, the initial steps to conditional simulation are:

1. decompose C11,

2. invert the resulting matrix L11, and

3. decompose (3-26) in order to obtain L22.

Once all these matrices are determined, new realizations of conditional X2s
c are obtained by

simply generating new "2 with a Gaussian random number generator and solving (3-27).  It can

be shown that the moments of  X2s
c are exactly the conditional moments defined in (2-46) and

(2-48) (Alabert, 1987;  Harter, 1992).

As an alternative to the above approach, Clifton and Neuman (1982) suggested to obtain

the kriging estimate X2
k of the points to be simulated.  Then an error es with covariance E22 =

(L22 U22) is generated taking advantage of the matrix decomposition method introduced in (3-

17):

L22 "2 = es (3-28)

Although based on the same theoretical foundation as the suggestion by Alabert (1987), just one

matrix (E22) needs to be decomposed instead of 2 as outlined in (3-27).  However, C11 must be

inverted to obtain the kriging weight matrix 712 and the kriging estimates X2
k (2-46).  (3-28) is

very general in that its application is not limited to simple kriging.  Ordinary or universal kriging

estimates with the ordinary or universal kriging covariances can be applied as well as others e.g.,

Bayesian estimates for inverse modeling (the latter was implemented by Clifton and Neuman,

1982).
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(3-29)

(3-30)

3.4.3 Gaussian Sequential Simulation

Sequential simulation was first implemented by Journel and Gomez-Hernandez (1989).

Their version of the sequential simulator was specifically designed to generate stationary

random fields with a non-parametric probability distribution ("indicator simulation").  Gomez-

Hernandez (1991) presented a sequential simulator for the generation of multivariate normal

random fields.  The Gaussian simulation technique goes back to the definition of unconditional

and conditional probabilities (2-42) and (2-43):  Rearranging equation (2-43), the joint

probability fX(x1,x2,...,xn) is expressed as a function of the marginal distribution of the known

data x1,....xm and the conditional distribution of the unknown RVs Xm+1,..., Xn:

The equation is expanded into a sequence of lower order conditional probability terms:

It is this form of the joint probability density function, which gives rise to the sequential

simulator:  The conditional probability function of each fX(xm+i|x1,...,xm,xm+1,...,xi-1), m < m+i #

n, can be expressed as a product of (i-1) univariate conditional density functions and the

unconditional density function of the known data x1,...,xm.  Hence the simulation algorithm for

a realization is the following:

1. select a datapoint xm+1
c to be generated,

2. find the conditional density for that datapoint given the measured data x1,...,xm and draw
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(3-31)

(3-32)

(3-33)

from it xm+1
c,

3. select a second datapoint xm+2
c to be generated,

4. find the conditional density for that datapoint given the measured data x1,...,xm and

given the already generated datapoint xm+1
c and draw from it xm+2

c,

5. repeat the procedure until a conditional sample has been drawn for all points.

For each realization, steps 1.-5. are implemented independently.  The procedure as such is

entirely general and can be applied to any random process.

The procedure is again illustrated for the multivariate normal, stationary, zero-mean

random process.  Specifically it is shown how 'to draw [a random number xm+i] from [a

univariate conditional] density function' (Gomez-Hernandez, 1991, p.42).  First, the moments

of the univariate conditional density function fX(xm+i|x1,...,xm,xm+1,...,xm+i-1), m < m+i # n, must

be specified.  By definitions (2-46) and (2-48), the conditional mean and covariance are given

by the kriging estimate xm+i
k and the kriging covariance Eij.  The kriging estimate xm+i

k is

computed from both measured  x1,...,xm and already generated data xm+1
c,...,xm+i-1

c:

As the conditional density is univariate, only the kriging variance Eii (2-48) is relevant:

The important difference between this and all previously described methods is that a univariate

conditional random variable is generated, which by definition renders the consideration of the

error covariance i.e., the spatial correlation structure of the error, superfluous.  X(m+i)s
c is

simulated by first obtaining the kriging estimate Xm+i
k and then adding a random error e(m+i)s,

which is drawn from a zero-mean, univariate normal distribution with variance Eii (3-32):
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No covariance matrices are involved in the generation of the error e(m+i)s thus reducing the task

of random field generation to generating independent, univariate random numbers.

Note that the procedure can  be equally applied to unconditional simulation and

conditional simulation.   In unconditional simulations,  the first point is generated as an

independent random variable with the desired unconditional mean and variance.  A second

datapoint is generated  conditioned on the first one in the  manner described by (3-33),  and so

on.  In a conditional  simulation the generation  of random fields begins with the already

measured data.  Subsequent datapoints are generated as in an unconditional simulation through

the conditional relationship (3-33).  For further details of the method, see Gomez-Hernandez

(1991).

3.5 Performance Analysis of the SRFFT, LU, TB, and S Random Field Generators

3.5.1 Design of the Performance Analysis

Random field generators must generate truly independent realizations X(x) of an RFV

such that the sample joint probability distribution of the random field realizations converges in

mean square to the desired ensemble probability distribution (the pdf of the assumed probability

space) in the limit as the number of realizations becomes infinite.  Generally, two conditions

must be fulfilled for a random field generator to give statistical results that converge in the mean

to the desired ensemble moments of the RFV:

1.  the random number generator (RNG) must be able to generate independent normally

distributed random numbers with  given mean : and  variance F² in the limit as the

sample size becomes large.

2.  the numerical implementation of the random field generator (RFG) must be free of

deterministic artificial patterns caused by the generating algorithm.

The first condition can be tested separately and should be tested prior to a performance
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analysis of a random field generator.  Random number generators are common in many scientific

programming libraries.  Two random number generators are tested both of which produce

independent random samples distributed uniformly between 0 and 1:  the random number

generator SURAND in the Engineering and Scientific Subroutine Library (ESSL) available with

the Fortran compilers for IBM workstations (IBM, 1993) and the random number generator

program RAN2 described by Press et al. (1992).  The normally distributed random numbers are

obtained after a transformation achieved through the subroutines SNRAND (IBM, 1993) and

GAUSDEV (Press et al., 1992) both of which use the Box-Muller method to obtain a normal

deviate from a uniform deviate (Knuth, 1981).

Random number generators are not truly random.  They rely on a deterministic formula

to generate a new random number.  Both random number generators tested are based on a

congruential  algorithm which algebraically  alters a given number.   Initially this number is

directly or indirectly supplied by the user.  In subsequent generations within the same program

execution the number is taken  from the preceding generation of a random number (Knuth,

1981).  Sparing the details of the algorithms, note that one of the most important properties of

good random number generators is the independence of subsequently generated random numbers

and the time to recurrence i.e., the number of random numbers generated before any previously

generated random number is generated a second time.  Once the seed to a random number is

regenerated the second time,  the following sequence of random numbers will be exactly the

same as the sequence of random numbers generated after the first occurrence and hence will

repeat itself ad infinitum.  Since all computers have finite accuracy, they can only generate a

finite number of different discrete numbers.  Thus, every random number generator will

eventually generate a random number that has already occurred before.  The length of the

random number sequence to the first recurrence is desired to be large, much larger than the
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number of samples actually generated in an application to assure the independence of the

samples.  Theoretically, infinite sequences can be achieved by appropriately shuffling small

parts of the sequence (Press et al., 1992).  For SURAND and RAN2 no recurrence of the initial

seed was found within the following 1012 numbers, after which the test was interrupted.

A number of methods exist to test random number generators (Knuth, 1981).  Sharp and

Bays (1992) test the independence of consecutive random numbers by plotting the two-

dimensional coordinates given by any two consecutive random numbers as dots into a map (see

Orr, 1993).  Biasedness can then often be discovered (although not always) if certain patterns

develop.   Unbiased uniform random number generators should fill such a map evenly.  Figure

3.1 shows a sample of 20000 pairs generated with SURAND and RAN2.  There is no obvious

artificial pattern in the samples and - at least qualitatively - they are indeed from a uniform

distribution.  The CPU-times of both random number generators are comparable. In cooperation

with Orr (see Orr, 1993) three other congruential random number generators were tested with

similar results:  DPRAND by Maclaren (1992), which is a portable random number generator

like RAN2, and the random number generators in the IMSL library (1991) and NAG library

(1990).

All five random number generators are tested by the author within the spectral random

field generator (original FORTRAN code provided by Gutjahr, 1989) and within the LU-

decomposition based random field generator (FORTRAN code developed by the author) and as

shown below, no specific bias was detectable due to the random number generator.

In this study the spectral random field generator is used for reasons that will become

obvious in chapter 7.  To assure its proper  performance a large Monte Carlo simulation with

1000 samples was performed on a square grid with 642 gridpoints. The mean : and variance F2

are 0 and 1, respectively.  The covariance is isotropic and exponential (Isaacs and Srivastava,
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(3-34)

1990):

where 8 is a  parameter called the "integral scale" of the covariance function and is here

specified to be five gridpoint increments, a commonly chosen discretization of the random field.

Commonly, the  integral scale is referred to as the "correlation length" or "correlation scale" of

C.  For comparison, an equivalent Monte Carlo simulation is performed with a LU-

decomposition based random field generator.  Both the SRFFT and the LU Monte Carlo

simulation are performed once with each of the five random number generators.  Orr (1993)

provided test-results from identically implemented TB and S Monte Carlo simulations using the

DPRAND random number generator.  The  turning bands method is based on FORTRAN code

by Zimmermann and Wilson, 1990.  The sequential simulator in C code has been provided by

Gomez-Hernandez (1991).

For the evaluation of the Monte Carlo simulations, a postprocessor was developed that

is designed to collect the following sample moments:

* (spatial) mean and variance of each realization by summing over all values in a

realization.

* (spatial) sample covariance of each realization by inverting the procedure of the spectral

random field generator:  take a Fourier transform of the realization X(x) to obtain the

spectral representation dZ(k), take the expected value of the spectral representation with

its conjugate to obtain the spectral density function, and compute the spatial sample

covariance from the inverse Fourier transform of the sample spectral density function

(Gutjahr, 1989).

* (local) mean and variance at location l as a function of the number of  realizations (10,
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(3-35)

20, 50, 100, 200, 500, and 1000 samples).

* (local) sample covariance at point l by performing the following summation over all N

realizations for N=10, 20, 50, 100, 200, 500, and 1000 samples:

where here n is an index to X and not a power of X.  The points k surrounding the point

l consist of all the points in a squared window of side-length 32 (33 points) centered on

point l.  This summation was implemented only for the 31 by 31 points in the center of

the 642 grid.  This sampling pattern avoids problems with boundaries and allows the

evaluation of the local sample covariance on a complete squared window.

The sample moments are further evaluated statistically to give several summary moments:

* the average of the spatial means of each realization (which is exactly equal to the spatial

average of the local means) gives the total mean of all numbers generated in the Monte

Carlo simulation and must converge in the mean square to zero as the number of

realizations (samples) increases.

* the average of the spatial variances is expected to be smaller or equal to the local

variances (due to spatial correlation), and the spatial average of the sample local

variances must converge in the mean square to the desired local ensemble variance as

the number of runs in the Monte Carlo simulation increases.

* the average of the local sample covariances (over all locations) must converge in the

mean square to the desired exponential covariance function.  Like the average spatial

variance, the average of the spatial sample covariances is expected to be smaller or

equal to the specified covariance.  The average spatial covariance normalized by the

average spatial variance, however, must be equal to the specified (normalized)
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exponential covariance function. The deviation of the average local covariance function

from the specified exponential covariance function is computed.  The local deviations

are integrated over the entire domain of the two-dimensional covariance to obtain a

mean deviation from theoretical covariance.  Given the set of 312 local covariances,

each of which is a 332 point two-dimensional field, the variance of the sample local

covariance is calculated as a function of the separation point k and integrated over all

k to obtain the average variance of the local covariance.

* the minimum and maximum of all local or spatial moments give a range of possible

sample moments.  The range is expected to decrease as the number of samples in the

Monte Carlo simulation increases.

3.5.2 Summary Performance of the RNGs and RFGs

First, the summary moments are evaluated from the Monte Carlo simulations with the

spectral (SRFFT)  and the LU-decomposition (LU) random field generators (RFGs) using the

five different random number generators (RNGs) mentioned above.

Figure (3.2a) shows the  total sample mean as a function of the number of SRFTT Monte

Carlo realizations (NMC) for each of the five random number generators.  The differences in

sample means shown for the different RNGs reflects the sample moment variability, since each

RNG generates a different sequence of random realizations.  Initially, the differences are large

due to the limited number of samples.   Note that although there are 642 = 4096 samples of

random numbers within each realization, these 4096 samples are not independent of each other

and the spatial sample mean does not converge to the ensemble mean as fast as that of NMC *

4096 uncorrelated random samples.  With all five random number generators the total sample
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mean  (spatial mean of the local sample means) converges to zero as the number  of realizations

increases.   A very similar behavior is seen  in the total mean of the LU generator (Figure 3.3a).

The convergence rate of the different RNG-based Monte Carlo simulations is the same for both

random field generators:  after 10 realizations the total sample mean varies within the range [-

0.1, 0.1];  after 100 realizations the range decreases to [-0.025, 0.025];  and after 1000

realizations it reaches the limits [-0.01, 0.01].  No particular bias (i.e. numerical artifact) is found

in any of the five RNGs with any of  the two RFGs regarding the total sample mean.  The

decrease in the range of the sample mean is consistent with the theoretical decrease of the

variance of the sample mean as a function of the sample size (Haan, 1977;  see chapter 8).

Both the average of local sample variances and the average of the spatial sample

variances converge (in the mean square sense) to the ensemble variance specified  as the number

of realizations becomes large (Figures 3.2c, 3.3c).  Due to the spatial correlation the mean spatial

variance is approximately 5% lower than the mean local variance with both the SRFFT and LU

generators.  Unexpectedly, however, it is found that the mean local variance for all five RNGs

in the SRFFT generator converges to values between 0.94 and 0.95, which is approximately 5%

below the specified unit variance.  The mean local variance of the LU generator converges to

1 for all five RNGs.  Hence the erroneous sample variance in the SRFFT simulations are solely

due to the procedure in the SRFFT random field generation and not due to the random number

generators used.  This is an important drawback of the SRFFT generator, which is addressed in

more detail below.

The range of local variances for the SRFFT and the LU random field generators are

comparable (Figures 3.2b, 3.3b and independent of the RNG used:  After 10 realizations, local

variances vary approximately between [0.1, 4], after 100 realizations the range is limited to [0.5,

1.8], and after 1000 realizations the range is approximately [0.7, 1.3].  The decrease in
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variability is due to the greater number of samples from which each local variance is computed.

On the other hand the number of samples from which the spatial variance is computed is always

4096, and with each realization a sample of the statistics "spatial variance" is added.  The range

of these samples therefore slightly increases as more realizations are added (Figures 3.2d and

3.3d).  At 1000 realizations the spatial variances vary approximately between [0.6, 1.7] for both

the SRFFT and the LU generator.  Again, the minimum and maximum spatial variance of the

SRFFT random fields are approximately 5% lower than those of the LU simulations.  For all

variance computations none of the RNGs produces results significantly different from others.

The total  average deviation of the sample local covariance from the specified

exponential covariance (averaged over all points k in the covariance field l AND averaged over

all covariance realizations l) varies around 0 and converges to near 0 as the number of

realizations increases.  Results for the SRFFT and the LU simulations are very similar,

independent of the RNG generator chosen (Figures 3.2e and 3.3e).  This shows that the deviation

of the variance in the SRFFT simulations from the specified variance does not occur for the

entire sample covariance.  Indeed, a comparison of the mean local sample covariance obtained

from a SRFFT simulation with the exponential covariance specified shows that the erroneous

deviation of the SRFFT sample covariance function is limited to the center (origin) of the

covariance function i.e., to the variance itself (see below).

The average variance, and the maximum, and minimum variance of the sample

covariance function, averaged over all points in the sample covariance, decrease such that their

logarithms (the logarithm of the mean, the minimum, and the maximum) decrease linearly with

the logarithm of the number of Monte Carlo realizations (Figures 3.2f and 3.3f), which is in

good agreement with the statistical analysis:  the standard deviation of the sample moments of

independent random variables theoretically decreases proportional to 1/n½ (c.f. Haan, 1977).
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The results for the SRFFT and the LU simulations are again nearly identical and independent

of the random number generators used.

Using the postprocessing program developed by this author, Orr (1993) also computed

summary statistics for the turning bands (TB) and the sequential simulator (S), with which he

had implemented Monte Carlo simulations under the same conditions as the above described

SRFFT and LU simulations.  Only the DPRAND subroutine was used as random number

generator (Maclaren 1992).  A comparison of the summary statistics of the four Monte Carlo

simulations with the DPRAND random number generator and the SRFFT, the LU, the TB, and

S random field generators are shown in Figures 3.4a through 3.4f.  In general both the TB and

S simulations give results that are - for all practical purposes - identical to the SRFFT and LU

simulations.  Neither the TB nor the S simulations show any bias regarding the mean local

variance, which is generally too low for the SRFFT simulations (Figure 3.4c).  The only notable

exception is a relatively high average deviation of the sample covariance from the specified

covariance in the S simulations (Figure 3e):  After 1000 realizations the mean deviation in the

S simulation is approximately five times higher than in any of the other RFG simulations, and

approximately 2.5 times larger than in any of the simulations with the other four RNGs in the

SRFFT and LU RFGs (compare Figure 3.4e with Figures 3.2e and 3.3e).  This may indicate that

the Sequential Simulator produces a slightly higher sample covariance than specified, either

overall, or in a small region within the covariance field.

In conclusion, the summary statistics indicate that any of the five random number

generators tested will produce reliable results.  With respect to the summary statistics, all four

random field generators produce results that converge in the mean square sense to the desired

ensemble distribution when the number of realizations is large.  The two exceptions are:  First,

the covariance of the SRFFT simulations is significantly lower (about 5%) at and only at the
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origin of the covariance field.  In other words, the variance is too low while all covariances

between two different points are statistically accurate.  Second, the S simulations may produce

a seemingly significant overall deviation in the covariance field such that the sample covariances

are on average larger than the specified covariance.  The summary statistics have also shown that

unless the number of Monte Carlo realizations exceed several hundred or even a thousand runs,

local statistics (such as the local mean, variance, and the local covariance field) have a very wide

spread and their local statistical significance is questionable.
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3.5.3 Local Performance Analysis of the RFGs

The purpose of an analysis of the local moments is to investigate possible spatial bias

in the realizations due to the particular random field generator.  With the experiences from the

above summary analysis it is sufficient to limit the analysis of the two-dimensional datasets to

Monte Carlo simulations with N = 1000 realizations.  First a single sample realization of each

RFG simulation is presented together with its spatial covariance field.  Then the local mean, the

local variance, the local covariance, and finally the average of the local covariances, and the

average of the spatial covariances are analyzed.  The author gratefully acknowledges the work

by Orr (1993), who implemented the TB and S simulations.

Figure 3.5 shows a representative single realization of each RFG simulation.  No

particularly disconcerting features are observed.  Similar observations were made for other

realizations, and generally found no particular notable bias within any one realization.  Their

spatial covariances (obtained by spectral analysis as described above)  are generally more or less

symmetrical and exponential near the very center (the origin of the covariance field) but also

characterize some of the strong spatial features in the particular random realization e.g., the east-

west trending valleys in the particular TB realization (Figure 3.6).  It must be emphasized that

any realization generated with any one of the RFGs may produce more or less dominant features

that are then reflected in the sample covariance function (due to the limited field size).  The

summary statistical analysis has shown, however, that overall these features are well within the

theoretically possible sample space.  The following analysis will investigate, whether any local

artifacts exists that are due to the numerical algorithms.

The local mean of 1000 realizations with each RFG are shown in Figure 3.7.  The

standard deviation of the local sample means e.g., in the LU simulation, is 0.0329.  This
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compares well with the theoretical standard deviation of the sample mean taken from a Gaussian

distribution, which is 0.0316 for a sample-size of 1000 (c.f. Haan, 1977).  In accordance with

stochastic theory the sample means are a random field variable themselves.  The correlation

structure of the sample mean field is not quite unlike that of the underlying random fields,

something that is observed throughout the remainder of this study.  The sample mean field

(actually a realization of the sample mean RFV) shows no particularly strong trend or non-

stationarity or other artificial patterns.

Similarly, the local variances of 1000 realizations are themselves a random field

realization with a familiar looking random pattern that reflects the fact that the correlation

structure of the variance field is - like that of the mean field - similar to the correlation structure

of the underlying random fields (Figure 3.8).  Again no particular trend, non-stationarity, or

pattern is observed that may be an artifact of the particular random field generator.  The only

exception is a very notable streak-line structure in the variance field of the TB simulation.  From

the left lower origin four lines extend radially throughout the variance field, dividing it into five

equally sized pieces (with the exception of the leftmost and the lowest piece, which are only

about half the size of the three others).  The lines reflect four of the 16 turning bands used for

the generation of the random field and are characterized by higher than normal variance on the

counterclockwise side and a lower than normal variance on the clockwise side along the

imaginary line.  These patterns have been reported elsewhere and can be partly eliminated by

increasing the number of turning bands.  Orr (1993) implemented an alternative TB algorithm

provided by Zimmerman (personal communication) and indeed found no artificial patterns in

the sample variance (random) field (Figure 3.15) when using 32 lines.

A sample local covariance field  (actually also a realization of the sample local

covariance RFV) centered around the (48,48) coordinate of the random field is shown in Figure
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3.9 for each of the four RFGs.  Despite the relatively large number of realizations (many

hydrogeologic and  soil physical applications  of the Monte Carlo  method are limited to a few

tens or a few hundred simulations), the local covariance functions exhibit a significant amount

of randomness. More importantly perhaps they show anisotropy and other irregular structures

with all of the four RFGs.   This is expected  since the statistical  significance of 1000

independent samples of the covariance product sum (2-29) is relatively weak.  Recall that a

similar variability is observed for the local sample variance, which has a sample range of ± 0.2

(or ± 20% of the specified standard deviation).

To obtain a larger sample base,  all 31² local covariance fields such as those in Figure

3.9 are averaged to obtain a mean local covariance field.   The 31² local covariance fields are not

statistically independent due to the correlation structure of the random field.  Nevertheless the

mean local covariance field has a very regular structure (Figure 3.10) since the sample error is

now much s maller than the range [0,1] of the underlying covariance function.   The shapes of

three of the four mean local covariance fields is very similar to the specified isotropic

exponential covariance function.   The TB simulator generates anisotropic  random fields with

the correct variance, but longer correlation than specified in the horizontal direction and shorter

correlation than specified in the vertical direction.   Furthermore, a strong lineation is visible,

when the difference is plotted between the mean sample local covariance of the TB simulation

and the exponential covariance (Figure 3.11).  As discussed above for the local variance, this

artificial TB pattern is believed to be due to the small number of turning bands chosen for the

simulation.  Orr (1993) reports that these patterns vanish when a much larger number of turning

bands is used with an improved version of the TB generator program.  Careful visualization

reveals that the mean covariance field of the improved program is indeed very accurate, but the

lineations in the deviation from the exponential covariance still exist, albeit at a much smaller
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amplitude than before (Figure 3.15).  The SRFFT simulator has a significant deviation only at

the origin of the covariance field i.e., the variance is biased, while all covariances of non-zero

lag seem to converge to the specified structure (Figure 3.11).  After correspondence with the

author of the original SRFFT generator, Allan Gutjahr, it is not entirely clear what causes this

particular bias.  A larger size of the random field domain reduces the error.  Similarly, the mean

covariance field of the sequential simulator is somewhat more stretched out than expected,

which possibly explains the positive bias in the total deviation from the specified covariance (see

summary statistics discussion).  Overall, the LU generator gives the most unbiased mean local

sample covariance field.

Figure 3.12 depicts the local variance of the sample covariances corresponding to the

local mean of the 31² superpositioned  local covariance fields in Figure 3.10.   All generators

have the largest variance near the origin due to the large absolute value of the mean covariance

field near and at the origin.  Overall the LU generator exhibits the smallest variance.  The S

simulator exhibits relatively large variances throughout a large central part of the covariance

field.  Both the S and TB generators also exhibit areas of large variance near the edges of the

covariance field, where the absolute value of the covariance is near 0.  Again not too much

significance should be given  to these patterns without  sampling from much larger populations

i.e., without analyzing a Monte Carlo simulation based on a sample size several orders of

magnitude larger.

Finally, the average of the first 50 spatial covariance field samples are analyzed, each

of which was obtained from a spectral analysis of a single random field realization (Figure 3.13).

The SRFFT, S, and LU generators have average spatial covariance fields very similar to the

average local covariance fields in Figure 3.10.  The TB generator, however, exhibits both strong

anisotropy and the familiar starlike pattern in its mean spatial covariance.  The deviation of the
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mean spatial covariance from the specified exponential covariance (Figure 3.14) clearly shows

the location of the 16 turning bands in the TB generator.  Again, the same bias can qualitatively

be observed in the improved version of the TB generator (Figure 3.15).

3.6 Conclusion

In summary of the moment analysis it is found that all random number generators tested

perform equally well.  Of the four random field generators tested, the LU-decomposition based

simulation showed  the least artificial bias.   The local moment analysis  confirmed that the

SRFFT generator produces sample covariances that are very close to the specified covariance

with the exception of the variance (covariance of zero-lag), which is on average about 5% too

low.  The error is probably due to the limited domain size.  The sequential simulator produces

sample covariances that are on average slightly larger than the specified covariance throughout

most of the sample covariance field.  Otherwise both the SRFFT and the S simulator produce

random fields that are consistent with the probability space specified.  The second order

moments of the turning band simulator exhibited significant artificial patterns due to the starlike

distribution of the 16 turning bands used.  An improved code and the choice of a larger number

of turning bands gave results comparable to those found for the other three RFGs (see Orr, 1993,

for details).

The CPU-efficiency of the four RFGs varies greatly, while the choice of the RNG has

no significant effect  on the computation time.   The CPU time for 1000 realizations of the

SRFFT and the LU simulators were 1112 sec. and 1920 sec., respectively, on an IBM

RS6000/320 system.  The computation time of the SRFFT is proportional to the number of

random fields that are generated.  In contrast, the LU simulator initially requires large amounts
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of computation  time just for the decomposition of the covariance matrix.   The CPU time  for

10 realizations of the LU simulator is 360 sec.  compared to only 29 sec. for 10 realizations of

the SRFFT simulator.  Unfortunately, no CPU-times are available for the simulations with the

TB and S simulators by Orr (1993).  Tompson et al. (1989) evaluated the computing efficiency

of the TB method as compared to the SRFFT  method and concluded  that the SRFFT will be

at least as efficient as the TB  method for random  fields on the order of less than 105 points.  For

very large random fields, the TB simulator is more efficient, and Gomez-Hernandez (1989)

claims similar efficiency for the sequential simulator.  The comparative efficiency of the four

different RFGs will mainly depend on the number of points generated in each field and on the

number of realizations.

While the LU generator gives very good results, its disadvantage is that it requires the

decomposition of a covariance matrix of size N², where N is the total number of points in the

random field (4096 in the above examples).   For smaller random fields (<5000 points)  with

many realizations this is indeed a very effective way of random field generation, since the

covariance matrix must only be decomposed once for an entire simulation.  Each realization then

simply  requires the  generation of  random  numbers and the  multiplication with the L  matrix

(3-17).  For large random fields, the LU-decomposition becomes too cumbersome, if not

impossible.

The largest drawback of the SRFFT generator is the overhead in the FFT, since the

actual random field is only (1/2)2 (in two dimensions) or (1/2)3 (in three dimensions) of the size

of the spectral field due to the symmetry (3-2) required to obtain real random fields.  Gutjahr

(1989) points out that the imaginary part of the inverse Fourier transform of the spectral

representation is also an independent realization with the required properties i.e., one transform

generates two independent realizations of the same random field.  For our purposes the SRFFT
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is sufficiently accurate (in the statistical sense) and CPU-efficient to justify its use for the

simulation of heterogeneous soils.
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Figure 3.1: Dot diagrams of the RAN2 (top) and ESSL (bottom) random number
generators.  Each of the 100,000 points represents two consecutive, uniformly
distributed random numbers.
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Figure 3.2: Summary moments of the sample mean, variance, and covariance as a function
of the number of Monte Carlo realizations, NMC.  Local samples moments are
taken at the same point over all realizations.  Spatial samples are taken from a
single realization by sampling over all points.  All simulations are implemented
with the SRFFT simulator.  Different symbols refer to dfiferent random number
generators: fr - RAN2, fe ESSL library, fd DPRAND, fi IMSL library,  fn NAG
library. The f in the labeling refers to SRFFT.
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Figure 3.3: Summary moments of the sample mean, variance, and covariance as a function
of the number of Monte Carlo realizations, NMC.  The simulation results
shown here are from simulations with the LU random field generator.  The I in
the labeling stands for LU random field generator”, otherwise the labeling is
identical to Figure 3.2.
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Figure 3.4: Same as Figures 3.2 and 3.3.  Here the four different RFGs are compared using
the same random number generator (DPRAND).  “g” and “t” are the labels for
the GCOSIM and the TB simulator, respectively.
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Figure 3.5: Sample Gaussian random field realizations with one realization of each tested
RFG.  The mean is specified to be 0; the variance is specified to be 1; the
correlation function is exponential with 8 = 5.
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Figure 3.6: Spatial covariance of the sample random field realizations in Figure 3.5 (also
see section 3.4.1).
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Figure 3.7: Local sample mean of each RFG after 1000 runs.
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Figure 3.8: Local sample variance of each RFG after 1000 realizations.
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Figure 3.9: Sample local covariance field showing the covariance between point (48,48)
and the surrounding 332-1 points.  The results are based on 1000 realizations.
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Figure 3.10: Mean of all 312 sample local covariance field (such as those shown in Figure
3.9).  Each sample local covariance field is based on 1000 realizations.
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Figure 3.11: Deviation of the mean sample covariance fields (Figure 3.10) from the
exponential covariance function.  The color flooding is omitted from the plot
for the TB simulator.  For the TB plot the total number of contour levels has
been increased to 61 (instead of 17) to visualized the lineation in the sample
covariance.  The range of the contours in the TB plot is [-0.13,0.18].  In the TB
plot the deviation is negative near the top and bottom of the plot and positive
towards the left and right side (see Figure 3.10).
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Figure 3.12: Variance of the sample covariance fields. The variance is obtained by
superposing all sample covariance fields.  Then the variance is computed for
each point in the covariance field similar to the local variance of the random
fiels.  The Turning Band Plot has a different gray-scale than the other three
plots (label inserted).  It has a larger range and is based on an exponential scale.
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Figure 3.13: Mean of 50 spatial covariance fields such as the ones shown in Figure 3.6.
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Figure 3.14: Deviation of the mean spatial covariance in Figure 3.13 from the exponential
covariance function.
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Figure 3.15: Selected results for the improved version of the TB simulator.  The plotting
variable and the flooding and contour ranges are identical to those of the LU
simulator in Figure 3.8(a). Figure 3.10(b), Figure 3.11(c), and Figure 3.14(d).
In the latter two plots, the overall range of the deviations is similar to that of the
LU simulations.  But small lineations remain as shown by the contour lines.
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