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(4-1)a

(4-1)b

4.STOCHASTIC THEORY OF UNSATURATED FLOW IN TWO DIMENSIONS

4.1 Mathematical Problem Formulation

Flow in two-dimensional porous media under variably saturated conditions is generally

modeled by Richards equation (Hillel, 1980):

where x1 and x2 are the horizontal and vertical coordinates, respectively.  Note that the denoting

of the vertical direction as x2 (rather than x1) is unusual (see Yeh, 1985a,b), but is chosen here

for consistency with the notation for the numerical model (chapter 5).  For the clarity in

subsequent chapters, the subscripts x and z are used interchangeably with the subscripts 1 and

2, where appropriate.  x2 is positive upward, h is the matric potential (negative for unsaturated

condition).  Ki(h), the principal unsaturated hydraulic conductivity, and the moisture capacity

term, C(h)=d2/dh, are functions of h.  For simplicity of notation and without loss of generality,

it is assumed that the principal axes of anisotropy in the hydraulic conductivity coincide with

the principal coordinate axes.

Under steady-state conditions the right-hand side of (2) vanishes and the solution

becomes independent of the water retention function 2(h):

Like the groundwater flow equation, Richards equation is based on the principles of Darcy's law

(conservation of momentum):
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(4-2)

(4-3)

(4-4)

(4-5)

and mass continuity (conservation of mass) :

qi is the flux per cross-sectional area Ai z xi, and Mmw/Mt  is the change of the total mass of water

per unit time.  Unlike the parameters in the saturated flow equation, the parameters in Richards

equation are functions of the matric potential h and hence equations (3-1a) and (3-1b) are

nonlinear equations. Parametric relationships must be constructed to relate the unsaturated

hydraulic conductivity K, the moisture content 2, and the moisture capacity function C to the

matric potential (head) h.  Since the moisture capacity function C(h) is defined in terms of  2 and

h, two functions Ki(h) and 2(h) are sufficient to complete the transient equation (3-1a).  A single

function Ki(h) suffices to complete the steady-state equation (3-1b).

Water retention 2(h) and saturated hydraulic conductivity Ks are commonly measured

from soil samples.  The measured 2(h) are used to find the parameters of a theoretical function

such that the function will best fit the empirical data.  The following class of functions has

become particularly useful in describing actual field data (VanGenuchten, 1980):

where

2s is the moisture content at saturation and 2r is the residual moisture content.  m is a fitting

parameter related to the tortuosity of the flow path and the correlation between pores.  " is a

parameter mainly associated with the pore size distribution.

Unlike the water retention relationship or the saturated hydraulic conductivity, the
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(4-6)

(4-7)

(4-8)

unsaturated hydraulic conductivity K(h) is much more difficult to measure both in the field and

in the laboratory.  Since K(h) depends on similar porous medium properties as 2(h), several

models have been developed to determine K(h) as a function of the known water retention

relationship.  Mualem (1976) suggested the relationship:

From this and (4-4)  VanGenuchten (1980) derived the following K(h) model:

Equations (4-4) an (4-7) are commonly known as the VanGenuchten model and have been used

to describe a number of scientific field sites related to the study of soil heterogeneity (Anderson

and Cassel, 1986; Field et al., 1984;  Hopmans and Stricker, 1989;  Wierenga et al., 1989, 1991).

While the VanGenuchten model has provided the flexibility needed to describe many field soils,

its functional form does not lend itself to the analytical study of soil moisture movement.

Analytical solutions to Richards equation (4-1) can be derived only with simpler models.  The

exponential model first suggested by Gardner (1958) provides a powerful class of K(h)

functions:

Again, " is related to the pore-size distribution and will in the remainder of the text be referred

to as the pore-size distribution parameter.  In the Gardner model Ks is related to, but need not

be taken as, the saturated hydraulic conductivity.  This should be kept in mind, as Ks is simply

referred to as "saturated hydraulic conductivity" throughout this text.

Russo (1988) developed the following 2(h) model that is consistent with Gardner's

exponential model for K(h) (4-8) and  with Mualem's pore-size distribution model (4-8):
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(4-9)

Equations (4-8) and (4-9) are sometimes referred to as the Gardner-Russo model (Russo, 1988).

In the stochastic analysis of unsaturated flow and transport in heterogeneous soils, Ks(x),

"(x), m(x), 2s(x), and 2r(x) become random field variables (RFVs, see chapter 2.5.1).  The RFVs

are defined by their probability distribution functions.  Field studies have shown that the

saturated hydraulic conductivity Ks, the pore-size distribution parameter ", and the tortuosity

factor m are lognormally distributed (White and Sully, 1992).  Little is known about the

variability of 2s and 2r and the sensitivity of the head and flux solutions to the variability of the

parameters defining the water retention functions (4-4) and (4-9).  Analytical models commonly

neglect the spatial variability in 2 or state their results in terms of the flux rather than in terms

of pore-velocity (Mantoglou et al., 1987a,b,c;  Russo, 1993a;  Yeh et al., 1985a,b).  For the sake

of clarity and since it is not the purpose of this study to investigate the impact of spatially

variable 2 on the transport behavior of solutes in unsaturated soils, the variability in 2s, 2r, m,

", and h in (4-4) and (4-9) will henceforth be ignored.  A constant water content 2 is assumed

throughout the domain.  Furthermore,  Ks and therefore K(h) are assumed to be locally isotropic

i.e., K1(x,h) = K2(x,h).  In the remainder of this work, Ks and " are the only independent

parameters that are assumed spatially variable in the governing equations (4-1) and (4-2) with

(4-8) and (4-9) being the constitutive equations.

The numerical steady-state analysis of flow and transport in this study is based on the

use of Gardner's exponential K(h) function (4-8),  since this K(h) model  also allows the

derivation of approximate (1st order) analytical solutions.  The practicality of using Gardner's

K(h) model may be questioned (White and Sully, 1992).  But this study is geared towards

investigating rather fundamental problems in the numerical stochastic treatment of unsaturated

flow and transport.  It is justified to confine the numerical modeling to some of the constraints

of analytical tools since the theoretical analysis of steady-state unsaturated flow and transport

is an important part of this study:
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- approximate analytical solutions allow a preliminary evaluation of the physical

importance of various parameters to the stochastic head and flux solutions (this

chapter);

- approximate analytical solutions are used as initial solutions to the numerical

solver to improve the CPU-efficiency of the Monte Carlo analysis by up to two

orders of magnitude (see chapter 7);

- analytical solutions serve to validate the numerical models within a range of

variability for which analytical solutions are known to be rather accurate (see

chapter 6, 8, and 9);

- the range of validity of the approximate analytical solutions is investigated

empirically by comparison to numerical solutions for highly heterogeneous

soils (see chapter 6, 8, and 9);

Yeh et al. (1985a,b,c) presented a thorough analysis of one- and three-dimensional steady-state

unsaturated flow in  heterogeneous soils based on Gardner's K(h)  model with constant " and

with normally distributed ".   The following will, for the first time, give a thorough analysis of

two-dimensional flow in heterogeneous soils under the more justifiable assumption that " is a

lognormally distributed  field parameter.   In addition spectral analysis  will be applied to

determine the first and second moments of the unsaturated hydraulic conductivity and of the

velocity components.   The analytical extension of these results to three dimensions as in Yeh

et al. (1985a,b) is straightforward.
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(4-10)

(4-11)

(4-12)

4.2 First-Order Perturbation Analysis of the Governing Stochastic Equation

This analysis is based on a first-order perturbation approach similar to the work by Bakr

et al. (1978), Gelhar and Axness (1983), and Yeh et al. (1985a,b).  Equation (4-1b) can be

rewritten as

where i=1, 2.  Throughout the dissertation, the notation 'log' refers to the natural logarithm

(unless otherwise noted).  The following perturbation notation is used for the random variables

logKs  log", and h:

where F(x), A(x), and H(x) are the expected values of logKs(x), log"(x), and h(x), respectively,

and f'(x), a'(x), and h'(x) are zero-mean, second order stationary perturbations at location x.  For

the sake of  brevity, the explicit dependency of the RFVs, their mean, and their perturbation on

the location x will be omitted from now on.

In general H is not uniform in space, but the gradient of H, Ji=MH/Mxi, is assumed to be

independent of location.  The unsaturated hydraulic conductivity is then given by

Writing exp(A+a') = exp(A) exp(a') and expanding the exponential perturbation term in a Taylor

series gives:
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(4-13)

(4-14)

(4-15)

(4-17)

(4-18)

Writing the geometric mean of " as '=exp(A) and truncating the Taylor series to first order, the

unsaturated hydraulic conductivity can also be approximated by a lognormally distributed

random variable:

where Y is the mean of logK(h) and y' is a zero-mean, second order stationary random

perturbation.  Expanding the product terms and again neglecting second-order terms the first-

order perturbation approximation of the unsaturated hydraulic conductivity is obtained:

Using (4-15) in (4-10) the stochastic form of Richards equation becomes:

Expanding the product terms, neglecting second and higher order terms, and noticing that the

derivatives of the mean of stationary random field variables are zero, the first order stochastic

Richards equation is:

Taking the expected values, the mean Richards equation is:

Subtracting the mean equation from the stochastic equation, the governing perturbation equation

becomes:
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(4-19)

(4-20)

This study is particularly concerned with cases involving gravity drainage conditions i.e., the

average gradient  of the total potential M=(h+x2)  is unity and the average gradient of h is zero

in all directions: Ji = 0.   Although the entire  following analysis can be carried out for any

constant mean gradients Ji, only the solutions for zero mean head gradient will be given.  In that

case H is uniform in space i.e., independent of location.  The governing perturbation equation

then simplifies to:

Note that this is a linear equation. The linearization has been achieved by dropping the higher

order perturbation products.

The head covariance function, the cross-covariance function between f' and h', and the

covariance and cross-covariance functions of flux related RFVs are obtained from a spectral

analysis of the respective second order stationary random processes.  Continuous parameter

stationary processes in infinite domains can be represented by Fourier-Stieltjes integrals (see

chapter 2):
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(4-21)

(4-22)

(4-23)

dZp(k) are orthogonal complex stochastic processes, p = f', a', or h', where:

where * indicates complex conjugate.  In other words, the process dZp(k) is a zero-mean

univariate Gaussian  random variable.   Any dZp(km) is statistically independent of dZp(kn) for

m � n and has a variance Spp(k) dk.  Spp(k) is the Fourier transform of the covariance functions

for the spatial  random processes Xp(x) = f'(x), a'(x), or h'(x).  Similarly the cross-spectral density

Spq(k) = <dZ*p(k) dZq(k)> is the Fourier transform of the cross-covariance function between the

processes p and q (p, q = f', a', or h').   The general relationship between the (cross-) covariance

and the (cross-) spectral density is defined by (3-4):

Note that Cpq(>) = Cpq(x, x+>).   This can be shown  by using the definition for Spq(k) = <dZ*p(k)

dZq(k)> and expanding the complex exponential in (4-23) to exp(ik(x-x+>), which leads to
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(4-24)

(4-25)

(4-26)

Using (4-22) and (4-23), (cross-) covariance functions of dependent variables are obtained from

their spectral representations dZp(k), which in turn are functions of the independent random

fields dZf'(k) and dZa'(k).

Using the spectral representation of the random variables f'(x), a'(x), and h'(x) (4-21) to

expand the governing first order perturbation equation (4-20), and taking the derivatives with

respect to the spatial coordinates, the partial differential equation becomes an integral equation:

[As with the spatial RFVs and for the sake of clarity, the dependency of dZp on k is implicitly

assumed and not denoted explicitly.]  Because of the uniqueness of the spectral representation

theorem,  the integral (4-25) is only zero,  if the expression in square brackets becomes zero.

The solution to (4-25) is an explicit closed form expression for the relationship between the

Fourier amplitudes of the independent RFVs a', f', and the dependent RFV h':

The reader is reminded that this is an exact solution to the first order perturbation equation

governing steady-state unsaturated flow in an infinite, vertically two-dimensional domain under

gravity drainage.  It is also an exact, but trivial solution to the fully perturbed Richards equation

with arbitrary  boundary conditions  at an  infinite distance  in the  limit as  F²f'->0 and F²a'->0.

For F²f'<<1 and F²a'<<1 the  above solution may be  taken as a valid  approximation of  the
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(4-27)

solution to the nonlinear Richards equation, since higher order perturbation products that were

disregarded during the derivation of (4-26) are indeed negligibly small.

4.3 Moment Analysis of Unsaturated Flow

4.3.1 Head

The previous section derives an explicit spectral head solution for the first order

perturbation flow equation.  The mean head H is assumed to be a known constant parameter

(gravity drainage).  The variance and covariance of the head are obtained from an inverse

Fourier transform of the spectral density, which can be computed numerically (see section 4.4).

The spectral density is related to the spectral representation through (4-22c).  Hence the

remaining step in the derivation of the head variance-covariance function is to take the expected

value of the products of dZh' and its conjugate complex dZh'*:

Although not explicitly stated (for reasons of brevity) Shh and all following spectral density

functions Spq are functions of k.  Also for simplicity of notation, the ' are dropped from the

subscripts to the spectral density S and the covariance function C.  Sff and Saa are the Fourier

transforms of the covariance functions Cff and Caa, respectively, and can be obtained analytically

for some covariance functions (Bakr, 1978;  Mizell, 1981).  The cross-spectral density Sfa

depends on the desired cross-correlation between f'(x) and a'(x+>).  A more general treatise on

generating cross-correlated random fields can be found in Robin et al. (1993).

When Caa/F²a = Cff/F²f  i.e.,  the correlation functions of a' and f' are identical, a' and f'

are related through the following relationship:
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(4-28)

(4-29)

(4-30)

(4-31)

(4-32)

(4-33)

(4-34)

where . = Fa/Ff, D  is the local  correlation between f'(x)  and a'(x), and w'(x) is a random process

uncorrelated to f'(x) but with the same covariance function.  Then it is easily seen by inspection

that

From this it follows immediately that

and the head spectral density function simplifies to:

The cross-spectral densities between f' and h' and between a' and h' are:

If the correlation functions of a' and f' are identical, definition (4-29) is used to replace Saa and

Saf = Sfa in (4-32) and (4-33), and to write Sah:

Note that Sfh* = Shf, and Sah* = Sha which can be seen by inspection of (4-24).  Since the cross-

spectral densities Sfh and Sah are even in the real parts, but odd  in the quadrature spectra with
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(4-35)

(4-36)

(4-37)

(4-38)

respect to k2, the resulting cross-covariances are symmetric in the direction normal to the mean

flow x1, but asymmetric in the direction parallel to mean flow x2 i.e., Cfh � Chf and Cah � Cha! 

All the necessary moments to determine the parameters of the multivariate Gaussian

probability density function of the matric potential h are now defined.  These analytical

relationships are strictly valid only for small perturbations with F²f' << 1 and F²a' <<1.

4.3.2 Unsaturated Hydraulic Conductivity

Recall the first order perturbation approximation of the logarithms of unsaturated

hydraulic conductivity given in (4-15).  Taking the expectation of (4-15) the equation for the 1st

order mean unsaturated hydraulic conductivity Y is:

Subtracting (4-35) from (4-15), the perturbation y' of the unsaturated hydraulic conductivity

becomes:

Again the spectral representations of f', a', and h' (4-21) are used to obtain a spectral

representation of y':

Then the spectral density of y', Syy, is the expectation of the product of dZy' with its complex

conjugate:
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(4-39)

(4-40)

(4-41)

where * indicates complex conjugate.  When Caa = .² Cff relationships (4-29) and (4-30) are

applied to obtain the spectral density  Syy in terms of Sff:

Similarly, the cross-spectral density Sf is

As with the cross-spectral densities Sfh and Sah , Sf and hence Cf are nonsymmetric functions and

care must be taken to apply the correct definition of the lag (4-24), when using these cross-

covariance functions.

4.3.3 Pore Velocity

Pore velocity is defined by dividing the Darcy flux (4-2) with the soil water content 2:

Using the first order approximation of K(h) given in (4-15), assuming that the mean head is the

same everywhere (gravity drainage), and expanding esp(y') into a first order Taylor series similar

to that of esp(a') in (4-13), the velocity components are approximated by:
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(4-42)

(4-43)

(4-44)

(4-45)

where Km = esp(Y) and jn' = Mh'/Mxn'.  The expected value of (4-42) gives the stationary first

order mean velocity components:

Subtracting the expressions in (4-43) from the stochastic representation of the velocity v in (4-

42), first order, zero mean velocity perturbations are obtained:

By simple inspection, and noting that dZj'n = ikndZh' it is seen that the corresponding spectral

representations of the velocity components are

Recall that Sv1.v1 = <dZv1* dZv1> and Sv2.v2 = <dZv2* dZv2>.  Then the Fourier transforms of the

velocity covariance functions are:
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(4-46)

(4-47)

(3-4)

(3-5)

In the special case Caa = .² Cff , (4-29) and (4-30) are used to obtain the spectral densities of the

velocity components in terms of Sff:

Other cross-spectral density functions involving the velocity are computed equivalently.

4.4 Obtaining 2-D (Cross-)Covariance Functions from (Cross-) Spectral Density

Functions by Inverse Fast Fourier Transforms

The (cross-) covariance function Cpq(>) = <Xp(x) Xq(x+>)> and the (cross-) spectral density

function Spq(k) as used in this and previous chapters are defined by the Fourier transform pair

(3-4) and (3-5) in chapter 3:

The inverse Fourier transforms (3-4) of the (cross-) spectral density functions derived in the

previous sections are  implemented numerically since a rigorous analytical evaluation of the
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double Fourier  integrals is  very difficult if not impossible.   In the past, spectral  density

functions derived for saturated flow and for unsaturated flow with constant " or normally

distributed " have either been evaluated for >=0 only (Yeh et al., 1985a,b), by numerical

integration (Yeh et al., 1985a,b; Russo, 1993a),  or analytically for a specific class of Sff (Bakr

et al., 1978;  Mizell, 1981).  Russo (1993a) used the spectral densities of the head h' and its

gradient jn' and the cross-spectral  densities involving  f', a', h', and jn'  given by Yeh et al.

(1985b).  The respective (cross-)covariances are evaluated numerically, and the covariance

functions of y', v1', and v2' are derived as functions (superpositions) of  these numerically

evaluated covariance and cross-covariances.  The superposition of several numerically evaluated

covariance and cross-covariance functions to obtain the unsaturated hydraulic conductivity and

velocity covariances is very error prone, particularly for Cv2.v2, the covariance of the velocity

component parallel to mean flow.  If the numerical evaluation of the inverse Fourier transforms

of the expressions in Yeh et al. (1985b) is not implemented with great accuracy, the additive

errors resulting in the numerically obtained (cross-) covariances from which Cv2.v2 is computed

may become considerable.  In contrast, the spectral density Sv2.v2 derived here (4-46) is exact in

the first order sense, and only one Fourier integral needs to be evaluated.

Unlike in the above mentioned studies, advantage is taken of a numerical technique

called (inverse) "fast Fourier transform" (FFT), which has already been encountered in the

previous chapter on random field generators.  FFT algorithms were introduced five decades ago

(Press et al., 1992).  The development of their fundamental theoretical framework and various

techniques for their implementation have since evolved into a field of science itself (Brigham,

1988).  FFT algorithms are readily available for many computer platforms and programming

languages (also see chapter 3.5).  The FFT algorithm is SCFT2 provided by the Engineering and

Scientific Solutions Library  (ESSL) (IBM, 1993) that is  part of the Fortran compiler  for the

IBM RS/6000 workstations.
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(4-48)

(4-49)

(4-50)

(4-51)

(4-52)

As with all FFT algorithms, the SCFT2 algorithm is defined in terms of the spatial

frequency u instead of the spectral wave-number k, where

Introducing a new variable Öpq(u) = (2B)² Spq(2Bu), substituting k with u, and noting that in two

dimensions dk = (2B)² du, the Fourier transform pair (3-4) and (3-5) becomes (compare to (3-8)

and (3-9):

In the numerical Fourier transform the continuous function under the integral is evaluated at a

finite number of discrete arguments i.e., the integral is discretized into a sum, and truncated at

sufficiently large positive and negative limits of the summation variable.  The discretization and

the truncation involve numerical errors, as will be seen later.  The covariance function is

discretized into a regular two-dimensional grid with an equal number of gridpoints in each

direction:

Similarly, the spectral density function is discretized on a regular two-dimensional grid with an

equal number of grid-points in each direction:

The spacing of the frequencies )u is a function of the total length of the spatial grid 2M)x,

since the lowest possible frequency (the frequency with the longest possible wavelength) in the

discretized domain has a length equal to the side-length of the spatial domain (see chapter 3.2):
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(4-53)

(4-54)

(4-55)

(4-56)

Similarly the highest possible frequency or Nyquist frequency is the reciprocal of twice the

spatial discretization:

To obtain the covariance function, a spatial discretization )> must be defined a priori.  The

gridpoints are then specified by

and since the spectral density functions in section (3.3) are defined  in terms of k:

Most numerical FFTs pack the arrays for Cpq and Spq not from -M to M-1, but from 0 to 2M-1

such that the values from -M to -1 are packed into the area M to 2M-1.  In other words, for the

purpose of the FFT  Öpq is packed as follows:

Öpq(2M-m1,2M-m2) = Öpq(-m1,-m2) 1 < m1,m2 < M

Öpq(m1,2M-m2) = Öpq(m1,-m2) 1 < m1,m2 < M (4-57)

Öpq(2M-m1,m2) = Öpq(-m1,m2) 1 < m1,m2 < M

and equivalently Cpq:

Cpq(2M-n1,2M-n2) = Cpq(-n1,-n2) 1 < n1,n2 < M

Cpq(n1,2M-n2) = Cpq(n1,-n2) 1 < n1,n2 < M (4-58)

Cpq(2M-n1,n2) = Cpq(-n1,n2) 1 < n1,n2 < M

The reasons for the packing order are explained, for example, in Brigham (1988).

Now the approximate inverse Fourier transform of S(k) can be obtained by replacing
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(4-59)

(4-60)

the integrals in (4-49) by a double summation, expanding Öpq(u) in terms of Spq(k) and replacing

du by )u:

which is the definition of the Fourier transform SCFT2 in ESSL:

where

y(n1,n2) = Cpq(n1,n2)

x(m1,m2) = Spq(2Bm1/(2M)x1),2Bm2/(2M)x2))

scale = (2B)²/(4M²)x1)x2)             l1 =l2 =2M                  isign = -1

From (4-51) and (4-52) it is seen that the discretization in the spatial domain determines the

truncation in the frequency domain, while the truncation in the spatial domain determines the

discretization in the frequency domain.  Truncation and discretization error are therefore

inseparable since both need to be avoided in both domains if the FFT is to be an accurate

estimate of the Fourier integral (4-49) (see e.g. Robin et al., 1993).  A discretization in the

spatial domain such that 8f = 10> and M=100 8f gives a sufficiently accurate estimate of (4-49).

Discretizing > such that 8f = 20> and M=100 8f or 8f = 10> and M=200 8f does not significantly

change the results.  Pseudo-analytical solutions of the covariance and cross-covariance functions

obtained after a numerical FFT of the analytical spectral density functions given in this chapter

are shown in subsequent chapters 6 and 8.
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