
Harter Dissertation - 1994 - 128

(5-1)

5.  MMOC2 - A NUMERICAL MODEL

FOR WATER FLOW AND TRANSPORT

IN VARIABLY SATURATED POROUS MEDIA

For the numerical simulation of flow and transport through a vertical cross-section of

a heterogeneous soil, the combined flow and transport model described by Yeh et al. (1993)

(henceforth referred to as "MMOC2") is used and modified for the purposes of this study.  This

chapter summarizes the main features of MMOC2 and the conceptual changes from the

description in Yeh et al. (1993).  For the details of MMOC2 the reader is referred to the original

publication.

The numerical flow model solves the governing equation for two-dimensional flow in

porous media, and handles saturated as well as unsaturated or partially saturated flow (Neuman,

1973):

where i,j = 1,2.  x1 and x2 are the horizontal and vertical spatial coordinates, respectively, with

x2 pointing upward  (see notation in previous chapters).  Kij(h) is the hydraulic conductivity

tensor, which reduces to an isotropic, spatially variable, single parameter K(h,x) for all purposes

of this study i.e., only locally isotropic phenomena are investigated.  K(h,x) is a function of the

soil matric potential only under unsaturated conditions (see chapter 4) and it equals the saturated

hydraulic conductivity Ks(x) under saturated conditions.  $s is an index for saturation and is 0

under unsaturated conditions  (h < 0) and 1 for saturated conditions h $ 0.  C(h,x) is the soil

water capacity function and Ss(x) is the specific storage capacity of the saturated soil.  The

numerical solution of the flow equation  - transient or steady-state (Mh/Mt=0)  - is achieved

through the  Galerkin finite-element technique  (FE) using triangular or rectangular  elements.

For this study, only rectangular elements are used, over which bilinear shape-functions are
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defined.  The nonlinear equations can be solved either by the Picard or by the Newton-Raphson

technique.  For the purpose of this study the Newton-Raphson method is chosen since it gives

satisfactory results at high computational  efficiency.  The Picard scheme is not used in any

applications of this study.  The resulting linear matrix equation is solved through an incomplete

LU-decomposition of the coefficient matrix as a preconditioner to the conjugate gradient

method.  Automatic time stepping is implemented for a more efficient handling of transient

infiltration processes.

After the matric potential is found by solving (5-1), MMOC2 also solves Darcy's

equation (4-2) by a Galerkin finite element method using the same bilinear shape functions as

for the solution of the flow equation (5-1).  The FE solution of Darcy's equation guarantees a

continuous flux field q(x) throughout the domain, which is advantageous when solving the

transport equation.

Transport of solutes through porous media is governed by the advection-dispersion

equation:

for i,j=1,2.  Dij is the local dispersion tensor computed as a function of the local flux q(x) = (qi(x)

qj(x))½:

"L is the longitudinal dispersivity and "T is the transverse dispersivity.  *ij=1 for i=j, *ij=0

otherwise, is the Kronecker delta.  D0 is the apparent molecular diffusion.  8 is a non-selective,

first-order decay rate constant.  R is the retardation coefficient and is related to the equilibrium

sorption coefficient Kd by:
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The modified version of MMOC2 used for this study solves equation (5-2) by applying a one-

step reverse particle tracking method to solve the advective part of (5-2) and a Galerkin finite

element method to solve the dispersive transport (Neuman, 1984).  The transport model

described by Yeh et al. (1993) includes terms for kinetic adsorption and desorption processes,

which have been omitted from this model version, since such processes have not been

investigated in this study.  Notice that in (5-4) a non-selective decay term has been added to the

transport equation, not originally contained in the model by Yeh et. al (1993).  The decay and

the sorption partitioning terms are part of the advective transport formulation solved numerically

by the particle tracking method described in Yeh et al. (1993).

This version of MMOC2 also changes an option affecting the particle tracking near

boundaries:  Unlike described by Yeh et al. (1993) the backward particle tracking algorithm

assumes that particles at no-flow boundaries are not reflected back into the domain, since the

applications in this study never use a no-flow boundary specifically to simulate a symmetry

boundary.  Only under the symmetry-assumption is a reflection of particles at no-flow

boundaries justified.  Finally, for reasons of both accuracy and efficiency, the time-step in the

transport simulation is selected such that the displacement )X =| v)t| of each particle per time-

step is at the most the distance between two nodes )x, i.e. the Courant number )X/)x is always

smaller than 1.

The model has been tested for a wide range of boundary and initial conditions by Yeh

et al. (1993).   Local dispersion in all applications  of this study is presumed to be on the order

of 1/10 to 1/100 of the element-length.  Such a small dispersion is sufficiently well reproduced

by simply relying on numerical dispersion and setting the input dispersion coefficient to zero.

Calculation of  the dispersive  terms in  equation (5-2)  is computationally very expensive.

Solving the advective transport equation only, and using numerical dispersion in lieu of solving

the dispersion equation in (5-2), saves a considerable amount of computation time in Monte
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Carlo simulations.  However, the exact amount of numerical dispersion varies both with velocity

and from location to location and cannot be exactly quantified.  While local dispersion plays an

important role in spreading an initially small contamination plume, the macrodispersion or

overall spreading of the contamination plume in most of this study's applications is several

orders of magnitudes larger than the spreading due to numerical dispersion or otherwise

specified local dispersion.  The spreading of a plume in heterogeneous media is predominantly

controlled by the heterogeneities in the soil.  Hence, while the existence of local dispersion is

important, its exact amount is relatively insignificant if it has an upper bound that is comparable

to the actual local dispersion desired.   Figure 5.1 shows an application of MMOC2 to a

hypothetical contamination problem in a heterogeneous soil.  The finite elements are squares

with a side-length of 10 cm.  The first simulation omitted the computation of the dispersive

portion in equation (5-2).  In the other simulations shown, the local dispersivities were assumed

to be isotropic.  Simulations with dispersivities of 0.001 cm, 0.01 cm, 0.1 cm, and 1 cm were

implemented, and it is obvious that only local dispersivities of 0.1 cm or 1/100 of the element-

length and larger disperse the plume stronger than numerical dispersion alone.  From several

such experiments it is found that the empirical, numerical dispersivity in simulations of transport

through heterogeneous soils is on the order of 1/10 to 1/100 of the element size.  In most

applications in this study the element size varies between 10 cm and 30 cm.  Hence, the

numerical dispersion is equivalent to a local dispersivity on the order of 1 mm to 1 cm, which

is realistic for many soils.  This justifies the use of particle tracking alone to solve (5-2).
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