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6.  GRID DESIGN AND ACCURACY IN NUMERICAL SIMULATIONS

OF VARIABLY SATURATED FLOW IN RANDOM MEDIA:

REVIEW AND NUMERICAL ANALYSIS

6.1 Introduction

Most numerical stochastic models are based either on the Monte Carlo technique or on

single large realizations.  The numerical stochastic models technically consists of three major

parts or modules:

1.) Random fields are generated to represent realizations of the stochastic input variables

(random field variables, RFV, see section 2.5.1 and chapter 3) such as the saturated

hydraulic conductivity.

2.) Using the random field(s) as input, a standard finite difference or finite element model

(or any other  numerical technique)  is applied to solve  the flow equation

deterministically i.e., to compute  the dependent variables (head and flux) at each

location in space and time - the latter  only for transient simulations (see chapter 5).

Step 1 and 2 may be repeated several times to obtain a sample of realizations that will

be large enough to represent the ensemble with only a small statistical error (Monte

Carlo simulation).  By invoking the ergodicity assumption (chapter 2) a single large

simulation is sometimes used by itself to represent the ensemble (Ababou, 1988; Russo,

1991).

3.) The last step of a stochastic simulation will be to employ statistical analysis on the

deterministic results i.e., to find, for example, the histogram, mean, variance, and

covariance of the resulting random fields of output variables (see e.g. chapter 3.4).

A number of design criteria have to be considered to assure that the Monte Carlo analysis will

be accurate when analyzing unsaturated flow in heterogeneous media (numerical stochastic

approach).  Discretization of the numerical grid and the time stepping have long been recognized
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as an important input parameter to assure the accuracy of numerical models for unsaturated flow

in homogeneous media (Fletcher, 1988).  The grid design of Monte Carlo simulations must in

addition assure results that are also accurate in the stochastic sense.  The working hypothesis

that will be tested in this chapter is that the grid design for Monte Carlo simulations (which are

evaluated for their statistical information content) is different from that required for

deterministic simulations (which are evaluated for their absolute information content).  In this

chapter, grid design criteria for the stochastic simulation of unsaturated flow are developed

based on the empirical statistical analysis of single large simulations for which the ergodicity

assumption can be invoked.

From the perspective of the numerical modeler the deterministic approach is merely a

special case of the stochastic approach.  As shown above, the deterministic method is embedded

in the stochastic approach as one of three major modules.  Hence, the list of important design

parameters includes several critical elements that are unique to the stochastic approach:

module 1: The simulated random fields have to converge in mean square to the desired

moment and statistical distribution specifications.  This restricts the choice of the minimum

relative correlation length 8' = 8/b ( 8: vector of directional correlation lengths; vectors are

indicated by lower boldface letters; b: vector of the length of a block  in each dimension;  a

block is a discrete, homogeneous unit within the heterogeneous domain). When using  SRFFT

or TB type random field generators the convergence requirement will in general impose certain

limits on the minimum relative size of the random field d' = d/8  (d: length vector of the domain

size e.g., depth and width of a vertical 2-D simulation domain).  The generated random field

should be free of any artificially introduced patterns such as the line-patterns resulting from

some versions of the turning bands random field generator (see chapter 3.4)(Gutjahr, 1989;

Tompson et al., 1989).

module 2:  The general formulation of the finite difference or finite element solution

algorithm, the element size )x, and the time-stepping )t must be chosen to assure stability,

consistency, and convergence of the solution.  Since the unsaturated flow problem is nonlinear,
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special demands are placed on the element size )x and the dimensionless size of the random

blocks b/)x in the simulated domain.  These criteria are distinctly different from criteria used

to model saturated flow,  as discussed below.   In transient simulations of unsaturated flow, the

time-step )t must also be chosen with care.

module 3:  For the stochastic analysis, effects from deterministic boundary conditions,

the stationarity and ergodicity of the simulation, and the degree of resolution of the heterogenous

field have to be taken into account.  The limits imposed by these requirements are often mutually

dependent because computing resources are limited.  The relative correlation length 8' = 8/b,

for example, is a measure of the resolution of the heterogeneous field:  the larger 8', the finer

the structure of the random field i.e., more of the true variance of the continuous random field

variable will be captured by the simulation.  However, the total size of the random field domain

must also be large with respect to the correlation length to assure that the spectrally generated

random fields accurately represent the desired moments (SRFFT method, chapter 3), to minimize

boundary effects, and to meet the requirements of the ergodicity assumption in a single large

realization (see chapters 2 and 3).  Given a maximum domain size d/)x (dictated by the limits

of the computer), an optimal compromise choice for the two parameters d/8, 8/b, and b/)x has

to be found.

While stochastic numerical models are increasingly applied to analyze the effects of

heterogeneities in the unsaturated zone, there is little guidance in the literature regarding the

design of the numerical grid used for such simulations.  Commonly, vertical discretization is

chosen on the  order of a  few centimeter,  while horizontal discretization  maybe on the order

of several tens of centimeters.  Also, few analytical or empirical results are available for

determining a meaningful relative correlation length 8'.   The smallest perturbation resolved by

any numerical grid has a wavelength twice the element-size (see chapter 3).  Thus, the statistical

resolution requirement that b << 8.   The resolution 8' is commonly chosen to be between two

and five (e.g. Ababou, 1988; Hopmans, 1989; Russo, 1991).

While such design criteria have been applied to stochastic simulations of unsaturated
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flow, most have originally been developed for solving the saturated flow equation.  The

immediate  application of these criteria to also solve Richards equation (4-1) seems not

warranted without a closer examination of the difficulties that may arise from the nonlinear

character of Richards equation.  The purpose of this chapter is to closely examine some of the

most important numerical design criteria mentioned.  Two-dimensional, heterogeneous,

unsaturated steady state flow in a single, large vertical flow domain is simulated i.e., the

stationarity and ergodicity assumptions are invoked (see also Ababou, 1988;  Russo, 1991).  The

difficulties encountered in deriving analytical solutions limit closed form stochastic analyses to

first or second order approximations (Yeh et al., 1985a,b;  Ababou, 1988;  this work, chapter 4).

This limitation renders most analytical solutions unsuitable for comparison with numerical

simulations in highly disordered media.  For the same reasons, it is also difficult to develop

exact modeling criteria based on a rigorous truncation and error analysis of the nonlinear

numerical model.

A common way to empirically establish certain grid design criteria, is to vary the grid

parameters and to compare the results among themselves (Hopmans et al., 1988) and possibly

with analytical solutions, if these are available.  The obvious drawback of the method is that the

criteria may only apply to a particular situation.  My hope, however, is that the following

examples will establish some general guidelines regarding the design of stochastic computer

simulations.  Numerical experiments are implemented to analyze the sensitivity of stochastic

solutions with respect to:

* the absolute length of the grid-elements )x

* the number b' = b/)x of elements within each homogeneous block 

* the size  8' =  8/b of each block relative to the correlation length of the

stochastic input variables

* the size d' = d/8 of the simulation domain relative to the correlation length of

the stochastic input variables 

Known limitations on grid-design are summarized in section 6.2.  The details of the simulations
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are given in section 6.3.  Results are discussed in section 6.4.  Analytical solutions developed

in chapter 4 will be used to verify the numerical solutions.  A comparison with simulations by

other authors is made in section 6.5.  A summary is given in section 6.6.

6.2 Review of Some Theoretical Considerations Regarding Numerical Accuracy

6.2.1 Grid Size

Well known criteria to assure accurate and stable solutions are only available for

determining the maximum element-size and the time-step in some deterministic FD or FE

methods (Fletcher, 1988).  Ababou (1988) derived a grid discretization or Peclet number based

on an error and truncation analysis of the particular finite difference model he developed for the

simulation of unsaturated, transient flow.  For vertical flow in a soil described by Gardner's

model for K(h), the grid Peclet number was found to be:

")x2 < 2 (6-1)

If this or other  similar criteria are strictly  applied to the simulation  of flow in heterogeneous

soils, the largest possible value of " in the random field dictates the discretization in space.

Similar arguments can  be made for the  discretization in time.   Since " is commonly  on the

order of 10-3 to 10-1 cm-1, vertical discretization in an unsaturated heterogeneous flow model is

often chosen to be between 2 cm and 10 cm (Ababou, 1988; Hopmans et al., 1988; Ünlü et al.,

1990;  Russo, 1991).  For horizontal grid lengths )x1, Hopmans et al. (1988) found little

difference in the stochastic results of two sets of Monte Carlo simulations with )x1 = 12.5 cm

and )x1 = 25 cm, respectively.  Other authors chose similar horizontal grid-lengths without

further specifying the reasons for their choice.   The vertical grid discretization in Hopmans et

al. (1988) is determined by reducing  )x2  systematically until no change is observed in the

results.

However, the numerical errors resulting from any particular choice of finite difference

or finite element method are only one of a number of possible error sources in the stochastic
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simulation.  An important limitation arises from the discrete, finite representation of continuous

RFVs.  The finite number of nodes or elements from which the statistical output moments are

computed in a numerical simulation (single realization or Monte Carlo) introduce significant

error in the sample statistics (see chapter 8).  Therefore, if only a small number of elements will

violate the discretization constraints imposed for purely numerical reasons, the statistical results

should not be altered significantly.  This would allow to weaken the Peclet constraint (6-1)

imposed on the grid-design, which is otherwise determined by the largest " value in the random

field.  Depending on the input parameters, the weakened constraint may allow a considerably

larger grid-size than a strict application of (6-1), particularly if " or - for that matter - any pore-

size distribution parameter is distributed log-normal, as found in field applications (e.g.

Wierenga et al., 1991; White and Sully, 1992).

6.2.2 Block Subdiscretization

Block subdiscretization is a  technique applied  specifically to nonlinear problems.  For

the purpose of this study, blocks are defined as the largest homogeneous, discrete units in a

random field to distinguish them from the elements in a finite element or finite difference grid.

A block is either equivalent to an element or it is subdivided into several elements.   The

technique of subdividing a (homogeneous) block into several elements is often used for the one-

dimensional simulation of infiltration into vertical soil columns consisting of several (random

or deterministic) layers of material with different physical properties (e.g. Hern and Melancon,

1986;  Yeh and Harvey, 1990).  Each layer is modeled by a small stack of cells or elements to

accurately capture the non-linear behavior of the matric potential within each layer (Figure 6.1).

Examples of using block subdiscretization in a two-dimensional, layered problem are found in

Hopmans et al. (1988).  Subdiscretization has not been applied to multidimensional

heterogeneous fields, where the physical parameters vary in both the horizontal and vertical

directions.  There, the common modeling rule is not to subdiscretize - in other words: each block
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is associated with one element (e.g.:  Ababou, 1988; Ünlü et al., 1990; Russo, 1991).

Figure 6.1 shows a typical matric potential distribution in layered media.  Layers of

coarse material exhibit a small fringe at the bottom, within which the matric potential changes

drastically, while the head in layers of fine material changes only gradually.  The thickness of

the fringe is mainly determined by the slope of the unsaturated hydraulic conductivity function.

Assuming Gardner's hydraulic conductivity model (4-8), the slope of the hydraulic conductivity

curve is characterized by " (Yeh and Harvey, 1990).  The thickness of the fringe )r is

approximately of the order 1/" (White and Sully, 1992).  Hence, for large ", which is

characteristic for coarse textured soils, the fringe is much thinner than for small ", which is

characteristic for fine textured soils.

If n elements are chosen to be required within the hypothetical thickness of a fully

developed fringe )r . 1/", then:

)r = n )x . 1/"   thus:   ")x . 1/n (6-2)

This simple heuristic criterion is slightly more stringent than the one inferred from the stability

analysis by Ababou (1988, p.423; also see (6-1)) and depends on the number n chosen.  In

applications with correlation lengths much larger than 1/" it may be appropriate to discretize

heterogeneity on a scale larger than that required for )x.  In those cases a discretization of

blocks (which represent the scale of heterogeneity) into several elements may seem justified.

However, in the same  case random fields can also be generated with a discretization equal to

the required element size and several tens of elements per correlation length.  No

subdiscretization is needed if the typical block-length b (usually 15%-20% of the correlation

length) satisfies the condition "b . 1/n.  Numerical examples are used to analyze the effect of

subdiscretization.

6.2.3 Correlation Length

Each block in the  simulation domain represents a finite,  homogeneous portion of the
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total domain, within which smaller scale variability is neglected.   In geostatistics, these blocks

are referred to as "support".  Although the term 'support' is closely related to the measurement

of certain data (estimation problem),  it is here also used as  term for the homogeneous blocks

in a simulated random field (simulation problem).

In geostatistics it is well-known that the choice of the (measurement) support is crucial

to the evaluation of the statistical properties of a RFV e.g., the mean and covariance, because

statistical properties are strongly related to the size and shape of the support.  Similarly, the size

and shape of the simulation support (blocks) has significant impact on the statistical results of

the simulation e.g., the mean and covariance of the matric potential h.  The simulation should

be designed such that the numerical model captures both the spatial variability of Ks and "

(input) and the spatial variability of h and q (output) with sufficient accuracy.  A compromise

must be found between representing the natural spatial variability with sufficient accuracy and

keeping the computing cost at a minimum.

Geostatistical methods provide simple analytical tools to determine how close the spatial

variability of the block values is to the total spatial variability of all the points in a real soil

profile.  Block values are assumed to be the arithmetic average of all point values within a block.

D.G. Krige derived a fundamental relationship that relates the variability of such block values

e.g., within a soil profile (the domain of interest), with the variability of all the points within the

same soil profile (Journel and Huijbregts, 1978):

F2 (p/d) = F2 (p/b) + F2 (b/d) (6-3)

where F2 (p/d) is the total variance (of the point values) within the domain, F2 (p/b) is the

variance of the point values within the block, and F2 (b/d) is the variance of the block values

within the domain.   In applications to subsurface flow problems the arithmetic average,  used

to derive (6-3), rarely gives an accurate estimate of "effective" values of conductivity on the

block scale (Yeh et al., 1985a,b;  Gomez-Hernandez, 1991;  Desbarats, 1992).  The linear

geostatistical approach is used here only as an approximation to illustrate the importance of

sufficiently resolving heterogeneities.  Journel and Huijbregts (1979) applied the variogram to
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derive the relationship between 2nd order moments of the point random variable X and the

block-averaged random variable XS.  In a second order stationary random field, the variogram

( is related to the covariance by:

((>) = (F² - C(>)) (6-4)

A random function that is  regularized on the support S centered around the point x is defined

as:

XS(x) = 1/S mS  X(y) dy (6-5)

The variogram (S(b) of XS (x) is derived from the variogram ((p) of the point-values by

(Journel and Huijbregts (1979, p. 89)):

(S(b) . ((p) - ((p,S) (6-6)

Note the similarity  of this equation with equation (6-3).  ((p,S) is the mean variogram of all

points within each block (support) S.   It is equivalent to the difference between a point

variogram (the spatial variability of the point values) and a variogram based on block values

(spatial variability of the blocks).  ((p,S) is defined by auxiliary functions (see e.g. Journel and

Huijbregts, 1979).  For rectangular blocks with sides l and L, the auxiliary function is of the

following form:
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(6-7)

F(L,l) can be evaluated using charts, numerical solutions, or analytical solutions (Zhang et al.,

1990).  "( is a shape function.  Equation (6-7) is used to determine how many blocks per

correlation lengths are needed to represent the point variability within a specified error.  For

example, if the error should not be more than 10%,  and assuming an exponential variogram,

then 8/b = 15.  A maximum difference between point and block variance of 5% is obtained with

a resolution of 30 blocks per correlation length, 8/b = 30.  On the other hand, a resolution of 8/b

= 4 captures only about 70% of the total variance.  In such situations considerable error is

expected in the estimation of the true variances of the output variables.

Applied to soil water flow, the problem is far more complex than illustrated here, since

the above approach (6-7) is based on Bayesian estimation theory, without direct involvement of

the physical problem.  Also note that point variability is neither a measurable quantity nor a

quantity of much interest.  It is the upscaling from the field scales of interest to the scales of a

simulation that is of importance.  The problem of upscaling data based on measurement support

to "effective" parameters for the simulation support (blocks) has been discussed elsewhere in

the literature (e.g. Rubin and Gomez-Hernandez, 1990).  But the simplified analysis given here

is helpful to illustrate the principle concern.

6.3 Numerical Simulation

6.3.1 Model Parameters, Initial and Boundary Conditions

Objectives for  the numerical simulations here are:   (1)  model verification:  to

investigate whether single large field numerical solutions that use a conservative grid-design are

comparable to analytical stochastic solutions.  (2)  grid-design study:  to implement a sensitivity

analysis by varying several design-related parameters and using field-site related values.
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The simulations are based on Gardner's exponential conductivity function (4-8) and the

assumption that " is lognormally distributed.  In this chapter it is assumed that the RFVs logKs

and log" in Gardner's model are perfectly correlated.  Then, Ks  and " can be derived from a

single random field Z by:

X = exp(:X + FX Z) (6-8)

Z is a N(0,1) normally distributed random process with zero mean, unit variance, and  with an

exponential covariance structure (2-28) defined by the integral scale 8.  The correlation structure

is preserved by the transformation such that logX (log: natural logarithm) satisfies the same

correlation function  as Z.   X is the lognormal random  process to be derived (X = Ks, ").   :X

is the specified mean of the logarithm of the RFV X and FX the square root of the variance of

the logarithm of X.  The mean  of logKs (where Ks is in [cm/d]) and log" (" in [1/cm]) are

chosen to be  5.5 and -4, respectively.  For the model verification the variances for logKs and

log" are 0.09 and 0.0009, respectively.  For the grid design analysis the variances of logKs and

log" are 4 and 0.25, respectively, which is representative of field conditions.

The random fields are generated using the spectral random field generator described in

chapter 3.  For the purpose of the grid-design sensitivity analysis, which is based on single large

random field  realizations,  differences in the sample  input moments from  simulation to

simulation must be avoided.  To achieve a better preservation of the specified moments, the

sample mean mg and the sample standard deviation sg are computed from the generated random

field Zg.  Then the following transformation is applied to obtain Z in  (6-8) from Zg:

Z = (Zg  - mg )/ sg (6-9)

The numerical solution of Richards equation, given the random field input of logKs and

log", is obtained using MMOC2 (chapter 5).    All non-variable input parameters to the model

are listed in Table 6.1.  The parameters are similar to those found for the field conditions at the

Las Cruces trench site (Wierenga et al., 1989, 1991).  The finite element net in all simulations

consists of 200 by 200 quadrilateral elements (rectangles or squares).  The boundary conditions

are:
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a. q2 = - 10 [cm/d] at x2 = max, i.e. constant flux at the top boundary

b. )h / )x1 = 0 at x1 = 0 and x1 = max, i.e. no flow across the vertical boundaries

c. )h / )x2 = 0 at x2 = 0, i.e. unit hydraulic gradient across the

bottom boundary.

x1 and x2 are the horizontal and vertical coordinates, respectively, x2 increasing in upward

direction.  The steady-state solutions to (4-1 b) are computed by solving the transient solution

of an initial value problem (4-1 a) at sufficiently large time.  A direct numerical solution of the

steady-state Richards equation is not possible due to the heterogeneity of the parameters (see

also chapter 7).  In addition, near static conditions may develop far from the true steady state

(Neuman, 1972).

6.3.2 Model Verification

 The model verification consists of a single Monte Carlo realization with a small

rectangular element size )x1 = 5 [cm] and )x2 = 2 [cm], a correlation length 81 = 50 [cm], 82=

20 [cm], and block-size = 1 element.  This problem configuration is in conservative agreement

with simulations presented by other authors (e.g. Ababou, 1988; Hopmans et al., 1988; Ünlü et

al., 1990).  To ensure that the perturbations of all RFVs are small, the variances of logKs and

log" are 0.09 and 0.0009, respectively.

6.3.3 Grid-Design Analysis

A number of parameters are varied in order to investigate the limits of numerical

stochastic models:  The element-length )x, the element shape )x1/)x2, the block-size b, the

relative correlation length 8/b, and consequently the relative domain size d/8.  For the grid-

design study the variance of log" was chosen such that the maximum " does not exceed 0.2

[1/cm].  Strictly applying the grid-Peclet number (6-2) limits the grid-size to less than 10 cm.
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In the experiments here the criterion is tested by varying the grid-size from 0.5 cm to 256 cm.

The block sizes chosen were 1 element, 2 by 2 elements, and 4 by 4 elements.  The (relative)

correlation length 8/b varied from the standard 4 and 5 block-lengths to 40 block-lengths.

Because the total size of the finite element grid was kept constant (200 by 200 elements), the

corresponding domain length varied from 50 8 to only 5 8.  A complete overview of the various

simulations is given in Figure 2.  Note that up to three simulations are implemented with

different grid-size )x at approximately equal correlation length 8.

Most simulations are implemented with square blocks of 1 and 2 by 2 elements.  The

simulations with 4 by 4 elements per block are limited to 8 = 5 and 10 block-lengths.

Rectangular elements are tested for )x2 = {2 [cm], 4[cm]} with )x1 = {2)x1, 4)x1, 8)x1} and

8x1 = 10 )x1, 8x2 = 10 )x2,.

All simulations use the same seed for the random field simulator.  Simulations based on

the same number of blocks but different block-lengths b (i.e. different element-size )x) have an

identical random structure.  The length-scale of the random structure, however, is different.

Simulations based on the same number of blocks but different (relative) correlation length 8/b

have similar pattern structures but each with the prescribed correlation length 8.  In addition, a

Monte Carlo simulation with 30 realizations is implemented with )x1 = )x2 = 4 [cm], 8 = 40

[cm], and block-size = 1 element.
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6.4 Results and Discussion

6.4.1 Random Field Generator

The random field generator is known to generate random fields free of numerical

artifacts if sufficient discretization of the spectral domain is chosen (see chapter 3).  The

normalization of the generated random fields (6-9) further decreases the sampling error.  The

realizations do not  contain any obvious artificial structures.  None of the random fields exhibit

any significant trends and all satisfy the stationarity and normality assumption.  The directional

sample autocorrelation  functions (Yevjevich, 1972)  show in more detail the quality of the

random fields given various domain sizes for the grid design study (Figure 6.3).  The sample

correlation functions compare very well with the exponential correlation function, if D/8 $ 20

(Figure 6.3c,d).  For D/8 # 10 the sample autocorrelation function deviates from the exponential

function and shows significantly shorter correlation lengths (Figure 6.3a,b).  In this particular

realization the horizontal autocorrelation function is less affected by sampling bias than the

vertical sample autocorrelation function thus inducing a slight anisotropy.  For D/8 = 5 a

significant gap exists between the two curves (Figure 3a).  The limitation of the SRFFT based

random field generator to large dimensionless domain-sizes (8' $ 10) was discussed in chapter

3.

6.4.2 Comparison with Analytical Solutions (Model Verification)

The simulation runs for the model verification are evaluated with respect to the mean,

variance, and covariance, which are compared to analytically derived moments.  In chapter 4,

the spectral density functions of the head, of the unsaturated hydraulic conductivity, and of the

flux components are derived. The mean of the unsaturated hydraulic conductivity and of the flux

components are  also computed  for given  constant  mean head.  In the numerical  simulation

no head boundaries are specified, only the mean flux is known.  An analytical first order
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approximation of  the mean head is obtained from the relationship for the mean unsaturated

hydraulic conductivity (4-35):

H = (Y - F) / ' (6-10)

F is the mean of logKs and ' the geometric mean of ".  Y is the mean of the unsaturated log

conductivity, which can be written in terms of the mean vertical flux (4-43):

exp(Y) = Km = <qz> (6-11)

For mass continuity the mean vertical flux must be equal to the specified boundary flux (10

[cm/d]) across the top boundary since no flux occurs across the vertical boundaries. With F =

5.5 and ' = 0.018 [1/cm], the analytical mean pressure head is -174.6 cm, which compares

excellently to the mean pressure  head of  -174.3 cm in the numerical simulation (Table 6.2).

The mean values of the other output RFVs are also essentially identical with the first order

analytical solution.

The analytical variances are computed from their respective spectral densities by a fast

Fourier transform.  For the numerical evaluation of the Fourier transforms, spectral density

functions are calculated on a 10242 grid such that its transform, the covariance function has a

resolution of 11 points per correlation length 8f and a size of 102.4 8f in each direction (see

chapter 4).  The exponential  input covariance  function is also computed as a FFT of its

analytical spectral density function to assess the accuracy of the numerical Fourier transform.

The variance obtained for logKs through the FFT is 3% below the fully analytical equivalent,

which was specified to be 0.09.  The accuracy does not improve significantly by increasing the

number of points per  correlation length  or by increasing the size of the FFT domain.  Other

FFT-analytical solutions from the 1st order perturbation analysis for this verification case are

assumed to have a similar margin of accuracy.

Table 6.3 shows that the  sample variance of logKs (from the random field generator)

is within 1% of the  specified variance  due to the normalization (6-9).   The sample variances

of logK and the vertical flux are 6% and 14% larger than their analytical variances, respectively.

In contrast the head and horizontal flux variances are by 4% and 9% lower, respectively, than
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the analytically determined variances.  Given the small error of the numerical Fourier transform

the remaining  5% to 10% variability in the sample variance must be attributed to sample error.

Recall that the 2002 samples are not mutually independent and the sample size must therefore

be considered limited.

The horizontal and vertical sample autocorrelation functions are shown in Figure 6.4

together with the analytically derived autocorrelation functions.  The autocorrelation function

is obtained from the covariance function by dividing the covariance with its variance.  For short

separation distances (>' < 2, where >' = >/8logKs) the sample correlation of logKs is in excellent

agreement with the analytical exponential correlation function.  At larger >' the sample

correlation in this realization is weaker than expected from the ensemble (analytical) correlation

function.  This is due to the proportionally smaller sample size from which the correlation is

computed as the separation distance increases (Yevjevich, 1972).  The smaller sample sizes are

associated with larger sampling errors.

A similarly good agreement at shorter separation distances is seen for the correlation

functions of the unsaturated hydraulic conductivity logK and the horizontal flux qh.  In contrast,

the correlation functions of the head and the vertical flux are significantly different from the

ensemble correlation functions even at short lag distances.  Since the size and discretization of

the FFT domain in the evaluation of the spectral density function is sufficiently accurate, the

difference between the ensemble and sample correlation functions must be attributed to sample

errors in the simulation.   The error of the numerical  results is likely due  to the limited size of

the simulation domain.   Both the horizontal and  vertical head ensemble  correlation functions

and the vertical ensemble  correlation of vv have very  long correlation lengths  relative to the

total domain length.   The total domain length both vertically and horizontally is 20 8f.   The

vertical and horizontal  correlation lengths of the  head and the  horizontal correlation length of

qv are three to five times larger than for logKs.  The domain length is therefore only about six

times the correlation length of the head.  Since the deterministic flux boundaries increase the

variance of  the head near the boundary (Rubin and Dagan, 1989) it is not surprising to see a
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generally shorter correlation length in the sample correlation functions of the head and the

vertical velocity.

Apart from the effects of the limited domain size, the simulations are in excellent

agreement with the analytical solutions.  The results confirm that the numerical model gives

sufficiently accurate solutions under a conservative grid-design.  Inaccuracies stem from the

limited size of the sample domain given the relatively strong and far-reaching correlation of the

head and the vertical velocity.

6.4.3. Grid-Design Sensitivity Analysis

6.4.3.1 Effects on the 1st Moment (Mean)

The analysis focuses on the sensitivity of the head, flux, and unsaturated hydraulic

conductivity moments with respect to the various design parameters.  Figure 6.5 depicts the

sample means of both the input and the output random fields as a function of "g 8f.  "g is given

as input parameter.  8f is directly obtained from the random field sample.  This is done in an

attempt to minimize the impact of varying sample error (6.4.1) occurring due to different relative

domain lengths.  The correlation length 8 of all stochastic variables is computed from the sample

covariance functions (Yevjevich, 1972) by iteratively solving the equation:

Cov(8) = F² e-1 (6-12)

This definition of the correlation length 8 coincides with the definition of the integral scale if

the sample correlation satisfies an exponential correlation function.

The mean values for the input parameters are fairly constant.  They show some sample

variation due to the different sizes of the random fields generated. Of the output parameters the

horizontal mean flux <qh>,  the vertical mean flux <qv>, and the mean of the unsaturated

hydraulic conductivity <logK> are constant and independent of the grid-size chosen if )x �16

cm.  The mean head varies significantly depending on the grid-design but also between Monte

Carlo runs of the same grid-design.  For elements larger than 162 [cm2], all sample mean values
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are decreasing.  The only exception is <logKs>, the independent parameter, and <qh>, which

always is close to 0.  In particular the mean vertical flux <qv> decreases significantly at large

element lengths although it shows very little sample variation at all for smaller elements.  Since

the flux at the top boundary is specified as 10 [cm/d] and no flux occurs across the vertical

boundaries, the decrease in the mean vertical flux rate is an indication of significant numerical

mass balance problems.  For elements with )x = 256 [cm] the decrease in mean vertical flux is

more than 20% of the specified flux rate at the top boundary.  For the same element size, the

mean head decreases by 15 cm or 30% of the observed standard deviation.

The first order approximations of the head disagree even for small element sizes.  The

first order mean head is 174.6 [cm] (see section 6.4.2), while the numerically obtained mean

heads range between 150 and 165 [cm] (based on computations with element lengths of 16 [cm]

and less).  While the variance of the output RFVs (unsaturated hydraulic conductivity and head)

is relatively small,  the large variance of the input parameters logKs  and log" introduce

significant analytical error into the first order approximations of the mean head.  This

demonstrates the limitations of the first order solutions derived in chapter 4 (see also chapter 8).

6.4.3.2 Variance and Covariance

HEAD:  The normalized head variance F*²h as a function of "g and 8f is computed in

a form similar to the one suggested by Yeh (1985b, eqn. 26a):
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(6-13)

The normalized head variance for block-size b' = 1 (b=)x) is shown in Figure 6.6 together with

the analytical function obtained from an evaluation of the first order spectral density of the head.

The first order analytical approximation of the 2nd moments of the head and other output

parameters are computed assuming a mean head of 155 [cm], which is representative for the

mean heads of the numerical computations.

It is assumed that the numerical results for small element size and large 8/b are as

accurate in the high input variance case (grid-design analysis) as in the low input variance

simulation (model verification, Figure 6.4)).  Although there are quantitative differences, the

empirical head sample variance follows a stochastic function similar to the analytical variance

function.  Figure 6.6 shows that for small values of  8f the first order approximation

overestimates the normalized sample variance of the head, while it largely underestimates F*2
h

for large 8f.  For block-size b'=1, the choice of the relative correlation length  8' = 8/b has a

consistent influence on F*2
h:  The larger 8' , the lower the normalized head variance.  Doubling

8' decreases the normalized variance of the head by approximately 10% with the only exception

being the case 8/b=40.  In other words, the higher resolution of the spatial variability in logKs

and log" leads to a slightly lower head variance relative to the variance of the independent RFV

logKs.  It is interesting to note that unlike the mean head values the normalized head variance

does not seem to be significantly altered by large element sizes.

The simulations with block size 2*2el. (b'=2)x) and 4*4el. (b'=4)x) give results very

similar to the single element block simulations (Figure 6.7) regarding the general shape of the

empirical variance function.  However, here the relative correlation length 8' has the opposite

effect:  The larger the resolution of perturbations (higher 8' ) the larger the normalized head

variance.  For 2*2el. blocks the normalized head variance increases by 5% to 10% when

doubling the relative correlation length.  For 4*4el. blocks, the same increase in relative
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correlation length causes a 30% to 40% increase in the normalized head variance.  Since a

change in relative correlation length changes the number of random points generated (and hence

the sample size), it is not clear from these results whether the differences are statistically

significant and due to the change in 8' or due to the change in the relative block-size b'.

To assess the statistical significance of the results, a small Monte Carlo simulation is

implemented with b'=)x , 8' = (10, 10) to investigate the variability of the sample statistics.

Figure 6.7 indicates  the range of values in the normalized head variance for 90% of the 30

Monte Carlo samples.  The large range of values for the normalized head variance is the

combined effect of the variability in sample head, in sample correlation length 8f, and in sample

logKs variance (see (6-13)).  The smallest and largest non-normalized sample head variances

differ by a factor of 2.  In the Monte Carlo simulation the input 8f is 40 [cm].  The sample 8f

varies from 34 to 57 [cm].  The sample variance of logKs, F
2

f, ranges from 3.6 to 4.5.  The range

of  sample  mean  head  values  obtained  from  each of  the Monte  Carlo  runs is  equivalent to

approximately 1/2 the head  standard deviation.   This shows that a single  large field simulation

can only give rough estimates of the head variance.  The range of the sample moments is much

larger even than the total range covered by the simulations with different element-, block-, and

correlation length.  Hence, the differences for the various choices of element size, relative

correlation length 8f', and block size b' observed for element-lengths not exceeding 32 cm are

statistically of limited  significance.  For a high level of accuracy, the choice of the relative input

correlation length will certainly have to be considered, but then a single large field realization

even with 40,000 elements is inadequate.  A greater statistical significance can only be achieved

by evaluating a large number of Monte Carlo runs and by comparing the results of entire Monte

Carlo simulations rather than those of single large realizations.   This is beyond the scope of this

chapter.  However, the results for different element size )x but identical resolution 8f' and

block-size b' are directly comparable, since they are based on the same set of random numbers.

For the (output) correlation length 8h of the matric suction head the results are similar:

In general, log8h is linearly proportional to log8f (Figure 6.8).  For large element sizes (large 8f)
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(6-14)

only insignificant deviations from a log-linear relationship are observed.  Like Fh
2, 8h shows a

dependence on the choice of the relative (input) correlation length 8':  As 8' increases from 5

to 40, 8h decreases, independent of the block-size chosen.  Comparing the correlation structure

for various block-sizes, it seems that the results are not sensitive to the block-discretization e.g.,

for b = )x  and 8 = 10b = 10)x the head correlation is the same as for b = 2)x and 8 = 5b =

10)x.  The exact match is mere coincidence, given that the first simulation was based on a

random field of 40,000 numbers, while the latter simulation was based on a random sub-field

of only 10,000 numbers.

FLUX:  The simulated normalized empirical flux variances Fq*²:

are approximately 30% to 50% above the theoretical 1st order analytical results if "g8f < 1.  The

differences between the numerical and the analytical results increase as "g8f  increases.  The

normalized vertical flux variance deviates even qualitatively from the stochastic analytical

results at correlation lengths corresponding to element sizes  )x > 16 cm indicating large

numerical errors with discretizations in excess of much more than 16 cm.  The increase in

vertical flux variance for the larger element sizes coincides with the decrease in the mean

vertical flux, further indicating that the vertical flux moments of all output moments are the most

sensitive to the element size.  The actual (non-normalized) vertical flux variance (like the

vertical flux mean) is approximately constant for )x � 16 cm (Figure 6.9).

The horizontal flux variance follows a similar stochastic form as the analytical solution

over the range of all correlation lengths/element sizes. The sensitivity of the flux variances to

element-length )x, block-size b', and relative correlation length 8' is in general slightly smaller

than the sensitivity  of the head variance  to these parameters.   Although not explicitly shown
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in Figure 6.8, the normalized flux variance of both the vertical and the horizontal flux decreases

as the relative correlation length 8' increases.  However, the range of variances obtained from

different random fields in the Monte Carlo simulation again indicates the weak statistical

significance of those results due to the sample error associated with one single large realization

when assessing uncertainty of unsaturated flow.

A plot of the vertical and horizontal correlation length 8qv vs. 8f reveals a very strong

correlation to the input correlation length over most of the range tested.  Strong deviations from

a log-linear type correlation between  8qv and 8f occur for )x $ 64 cm (Figure 6.10).  Figure

6.11 shows the same results for the horizontal flux qh.  Unlike 8qv the numerically determined

correlation length of the horizontal flux  8qh slows rather than accelerates its growth relative to

8f for  8f > 100 cm.  The analytically derived 8qv and 8qh show a similar nonlinear dependence.

  These results for the correlation length of the two flux components as an integrated

measure of the covariance function are rather independent of the block-size chosen.  The block-

size itself has a small influence on the results.  Given the range of possible outcomes of the

normalized flux variance from a small Monte Carlo simulation, both the influence of the block-

size and of the relative correlation length are almost negligible.

UNSATURATED K:  A plot of the variance of logK against "g8 and a plot of the

correlation length of the unsaturated hydraulic conductivity against the input correlation length

of logKs reveals that the unsaturated hydraulic conductivity are little sensitive to the tested grid-

design options for )x # 32 cm (Figure 6.12a-c).  As for other statistical output parameters, the

variation of sample moments within a single Monte Carlo simulation exceeds the variations

observed due to different grid-design.  Since the dependence of the logK moments on block size

and relative correlation  length is much less than the uncertainty arising from the small sample

size and hence from the variability in the sample moments there is little further insight these

simulations can shed.

As expected, a strong linear dependence exists between 8y and 8f.  The shape of the

unsaturated variance function is similar to the vertical flux variance function.  Note that the
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vertical flux has a correlation length approximately equal to the input correlation length, while

the correlation length of the unsaturated hydraulic conductivity is only about half of 8f (Figure

6.12b,c).   The analytically determined correlation lengths (1st order) are generally larger than

the numerical ones.  Only at large 8f > 32 cm both the horizontal and the vertical correlation

length of logK are above the analytical results and also deviate from the linear correlation with

8f.

6.4.3.3 Rectangular vs. Square Elements

To investigate the numerical  effect of the ratio between the horizontal and vertical

length of an element, an anisotropic  field is simulated  once with rectangular blocks consisting

of several square elements and once with rectangular blocks consisting of a single rectangular

element.  Each block consists of only one row of elements in the vertical direction.  The block-

side ratios b1/b2 in the  five cases examined are 2, 4, and 8.   The relative correlation length 8'

is 10 in both the vertical and horizontal directions.  Table 6.3 compares several selected results

obtained with the square element solutions vs. the rectangular element solutions.  For the block-

size ratios in these examples there is a remarkable agreement between both types of element

shape.  The difference in output parameter variance is generally less than 5% of the respective

total variance.   While the variance of the  unsaturated log hydraulic conductivity is slightly

smaller for square elements than for rectangular elements, all other variances are slightly larger

for square elements than for rectangular elements.  The differences in the correlation length are

on the order of 1%.   The correlation length  of the square elements is always slightly smaller

than for rectangular elements.  Overall no particularly strong bias is found associated with

different element shapes.

6.5 Comparison with Other Heterogeneous Flow Simulation Studies
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The general framework of the numerical experiments is similar to simulations reported

by Hopmans et al. (1989), Ünlü et al.(1990), and Russo (1991).  The grid-design analysis not

only allows the assessment of  the effect of various design parameters but also sheds some

valuable insight into the stochastic analysis of flow in heterogeneous porous media.  In the

following paragraphs the  results from section 6.4 are compared  with the Monte Carlo

simulation results obtained by the above authors.

Russo (1991) and Russo and Dagan (1991) (referred to here as R&D) simulate and

evaluate an infiltration event in heterogeneous, unsaturated media in two dimensions with a

single large domain simulation.  Their computer simulation solves Richards equation with 2, the

water content, instead of the matric potential h as dependent variable.  The input RFVs are

generated based on the similar media theory (Warrick et al., 1977), which requires one random

field from which all random input variables are derived (compare to (6-8)).  Unlike the

simulations here, their simulation was based on VanGenuchten's constitutive equations for K(2)

and R(2).  Their grid-discretization was within the framework tested here ()x=20 cm, )z=2

cm).  The simulation was based on a grid with just over 30,000 nodes with a relative domain size

d' =(15, 80) in the horizontal and vertical direction, respectively.  Since the resulting correlation

length of the water content is similar to the input correlation of the scaling factor, the simulation

results of the water content moments have less sampling error than the head moments in the

simulations implemented here.  But no attempt is made to characterize the sample variance of

either the input or the output stochastic sample parameters.

In their analysis R&D suggest that

(F² 8)y = (F² 8)f (6-15)

reasoning that under unsaturated conditions the correlation length of the conductivity decreases

and the variance increases.  Clearly, the simulations here demonstrate that the relationship does

not necessarily hold.  R&D concluded that the unsaturated hydraulic conductivity variance

increases reciprocal to the decrease in correlation length as the soil dries out.  However, the

behavior of F²y among others depends primarily on the set of unsaturated hydraulic conductivity



Harter Dissertation - 1994 - 156

functions generated and on the mean hydraulic head in the simulation.  This is true for both

Gardner's and VanGenuchten's expression of K(h) and will be determined by the mean and

variance chosen for the parameters in the K(h) expression.  Field evidence qualitatively supports

these findings (White and Sully, 1992).  In the simulations described above F²y  is smaller than

the variance for the saturated hydraulic conductivity F²f:  The correlation of f and log" causes

a continuous decrease of the unsaturated conductivity variance as the mean head decreases until

it reaches a minimum near hmin = -1/("g.) (see Figure 6.13).  At heads drier than hmin the

unsaturated conductivity variance increases with decreasing head.  While the reduction of F²y

is an artifact of the selected model, it should be understood that parameters are generally chosen

to fit measured data with the K(h) function.  In particular, if Gardner's exponential expression

is chosen, the parameter logKs should not be mistaken for the actual saturated hydraulic

conductivity.  Gardner's function is known to work well only for a limited range of suction

values.  If a wide range of h is expected to occur during the simulations, VanGenuchten's or

other K(h) relations may be more satisfying.  In general, however, a  statement like (6-15) is not

warranted given the strong dependence of F²y on the K(h) function.

As a consequence of the hypothesis (6-15), R&D also discuss the possibility that

unsaturated transport variability may be governed by similar laws as saturated transport due to

the fact that the "Lagrangian analysis [...] is of general nature and applies to saturated and

unsaturated flow as well."  In particular they find for their simulation, that

Fqv
2/<qv>² 8qv = F²f 8f (6-16)

The results in section 6.4 partially supports their conclusion.  Indeed remarkably close

agreement with (6-16) is found if the variance and correlation length of f=logKs is replaced with

the variance and correlation length of y=logK (Figure 6.14).  However, (6-16) does not hold for

logKs as suggested by R&D.  This precludes an a priori determination of the longitudinal

dispersivity from F²f and 8f alone.  A linear regression curve through the experimental values

also exhibits a slope slightly larger than 1, which does not seem to be caused by the larger )x

alone (see the case, where b = 1)x).
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A further hypothesis tested by R&D suggests that according to theoretical results

suggested originally for saturated flow, the unsaturated flux moments are characterized

approximately by:

 CVqz² = Fqv
2/<qz>² = 0.375 F²f (6-17)

In neither Russo's nor the simulations in 6.4 does this particular relationship hold.  But if F²logKs

is again replaced with F²logK the agreement between the numerical results and (6-21) is quite

good:  In the simulations of section 6.4 CVqz²/F²logK varies from 0.24 to 0.31 for the simulations

with single element blocks, from 0.25 to 0.40 for 2*2 element-blocks, and from 0.28 to 0.34 for

the 4*4 element blocks.  This supports the hypothesis that the stochastic theory developed for

the saturated velocity field may hold for the unsaturated field, with logK replacing logKs (Figure

6.15) (see also chapter 9).

The results presented here are also in agreement with some of the findings of Hopmans

et al. (1988) (referred to here as Hopmans), who simulated 2-D infiltration into one- and two-

layered soils.  In their simulations of the one-layered case,  the simulated soil consists of a set

of random soil property block-columns, each of which is subdivided into homogeneous (finite

difference) elements.  They find that the head values converged quickly to the ensemble

moments.  Only 10 Monte Carlo simulations with 50 random soil columns (approximately

corresponding to a single realization with 500 random soil columns) were needed to achieve

convergence, a result that is in clear contrast with the findings of section 6.4.  As shown

previously even a single realization of 40,000 random blocks may not be considered to give

results of the accuracy reported by Hopmans.  The reason for the apparent discrepancy between

Hopmans results and those reported here are the following:  (1.) The bottom boundary condition

in Hopmans simulation is fixed with respect to the head, thereby greatly reducing the head

variance in most of the simulation domain.  (2.)  Hopmans' random fields are random only in the

horizontal direction.  The variance in Hopmans simulation varies between 80 and 400 cm2

compared to a range from less than 5 cm2 to more than 1000 cm2 in the simulations presented

here.  In contrast to the strong horizontal head correlation of the simulations in this study, the



Harter Dissertation - 1994 - 158

correlation length in Hopmans' simulation was only slightly larger than the input correlation

length and did not exceed 3 )x or 1/15 of the domain size in the horizontal direction (Hopmans

et al, 1988, Figure 5).

Hopmans used correlation lengths (in the definition of (6-12)) of 2 blocks and 4 blocks.

Like in the simulations of this study, a small but discernable difference was found in the head

correlation length that might be attributed to the better resolution of the heterogeneous

properties:  Their table 5 also indicates a slight decrease in the correlation length of the head as

the relative input correlation length increases.

The results in 6.4 regarding the stability of the mean head and flux confirm similar

findings of Ünlü et al. (1990) (here referred to as Ünlü).  Their one-dimensional, vertical,

transient flow simulations showed a similar behavior of the head and flux variance as a function

of the input variance as Hopmans simulations and the simulations ins section 6.4.  Furthermore,

the simulations  in this study  confirm the  conclusion of Ünlü,  that the  flux variance in mean

flow direction increases, if the correlation length in mean flow direction increases, while the

vertical flux variance decreases,  if the correlation length in the horizontal direction increases:

In the simulations with varying element-width )x2, but element-"thickness" )x1 (and

consequently a change of 8x2 but not of 8x1) the simulations with larger 8x2 have a significantly

smaller variance in qx1, while the variance of qx2 increases.   In all other simulations, the

simultaneous change in width and thickness of the element (to keep the square form) and hence

in 8 caused a decrease in F²qh, but an increase in F²qv for any constant 8/b and b/)x1.  Although

discernable, the increase in the vertical flux variance is by far not as drastic as observed in the

1-dimensional simulations of Ünlü.  This is expected due to the higher degree of freedom in the

flow-path for the 2-D simulations (see also Yeh, 1985a).

6.6 Conclusion and Summary

The previous analysis of several dozen flow simulations with varying element-size,
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block-size, and correlation-length allows valuable insight into the accuracy of numerical

stochastic solutions and its dependence on grid-design.  The simulation further sheds some light

on previous analyses by various authors.

As part of the model verification the numerical solutions for the stochastic moments of

the head and flux (mean, variance, and covariance) are found to compare well with the analytical

results for 2-D flow that were derived in chapter 4.  The only disagreement found between

analytical and numerical results are the covariance functions of the head and the vertical flux.

Both the head and the vertical flux have very long correlation lengths, several times longer than

the input correlation length 8f.  The size of the domain (200 by 200 elements or 20 by 20

correlation lengths) is found to be inadequate to unbiasedly sample the head and vertical flux.

As a result the numerical covariance functions are of significantly shorter correlation length than

the analytical covariances for the head and the vertical velocity.

The grid design sensitivity analysis was implemented with parameters chosen to be

representative of field conditions.  The conservative grid-design simulation results served as

comparative basis for the sensitivity analysis.  Since the input parameters have a large variance,

the analytical solutions derived in chapter 4 cannot serve as a direct verification tool for the grid

design sensitivity analysis.   Instead it may serve as a guideline only.  Indeed,  the moments of

the numerical simulation significantly differ from the analytically determined moments, even

for the same conservatively chosen grid-design.  But the general qualitative dependency between

stochastic input and output parameters was found to be similar.

The element-size  was found to have little influence on the head solution accuracy as

long as 32 cm thickness and  width was not exceeded.   Numerical oscillations significantly

distort the head and unsaturated hydraulic conductivity  moments only if simulations are based

on element-sizes of 64 cm and larger.  The vertical flux moments are more sensitive to the grid-

design than the head moments and require an element size of 16 cm or less in the vertical

direction.   A grid-Peclet number ")x < 2,  derived for the quasi-linear form of Richards

equation, gives a very safe margin if it is strictly applied such that the condition is met for all
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elements.  Based on the findings of section 6.4 a weaker grid-Peclet number restriction can be

formulated:

"g)x < 0.5 (6-18)

where "g is the geometric mean of ".   This criterion is simple to implement,  gives larger

freedom in the choice of the element-size and still provides accurate solutions.   For most

practical purposes, this allows grid-sizes of up to 20 cm and more in the vertical direction.  The

element size in the horizontal direction is by far not as critical,  and horizontal element  lengths

of  e.g. 4 cm and 32 cm give identical results.

The subdiscretization into multi-element  blocks for better  resolution of the nonlinear

head variations gave little improvement in the accuracy of the solutions.  The differences to the

simulations with  single-element blocks  were subtle  and statistically of little significance.  If

b=)x is sufficiently small to give  a good resolution  of the heterogeneities (i.e. b/8 # 0.1), and

if )x satisfies the grid-Peclet criterion to avoid oscillations, the error introduced by linear head

interpolation between element nodes is reduced sufficiently to be neglected.

The simulations have shown  that the choice of a larger relative correlation length has

a discernable albeit small effect on the head and flux variance and covariance:  With large 8/b

the stronger coherence of random input parameters reduces the discrete jumps in hydraulic

properties between neighboring blocks.  Hence, the nonlinearity in the matric potential field

decreases, while its numerical approximation improves.  As a result the output variance of the

head tends to increase due to a higher resolution of the perturbations and the output head

correlation length decreases.  In contrast, the flux variance decreases as the perturbation

resolution increases.  The differences have a weak statistical significance but are in accordance

with findings by Hopmans et al.  (1988).

By comparing several single large realizations it was found that simulations, which are

based on a singe large realization, give stochastic results that are associated with considerable

sampling error.  Although only results for a limited number of Monte Carlo realizations are

available, the variations of the sample correlation lengths and sample variances of head and flux
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indicate that a single realization with 104 - 105 elements and a side-length of 20 8f does give

results with a sampling error of up to a factor 2.

With respect to previously implemented research, the simulations confirm the hypothesis

by Russo and Dagan (1991), that the unsaturated velocity field may be subject to the same

stochastic processes formulated for the saturated case.  By consistently replacing the moments

of logKs with the moments of logK, it was shown that the Lagrangian unsaturated flux moments

presented in Russo and Dagan (1991) are related to the unsaturated hydraulic conductivity

moments in a manner very similar to that found under saturated condition.  The simulations in

this chapter are not considered a complete proof of their hypothesis because other factors, like

the infiltration rate and the geometric mean of ", may strongly influence the results as well. Here

these parameters were kept constant.  It would be particularly interesting to investigate the

proposed relationships for water movement in dry soils.  Most importantly, however, it is also

shown that their assumption (6-15) does not generally hold.  In contrast to the suggestion by

Russo and Dagan (1991), it is therefore not possible to derive the moments of the flux field

directly from the moments of the input random field of logKs.  

Further research is certainly necessary to obtain a better understanding of numerical

grid-design in stochastic simulations of unsaturated flow. This research has not addressed the

impact of the infiltration rate on grid-design or the effect of different constitutive functions and

constitutive parameters.  The soil flow simulations only addressed accuracy for steady-state

conditions in a relatively moist soil.  The results underline the necessity of a careful grid-design

evaluation to avoid numerical errors but also indicate that much more rigorous Monte Carlo

simulations are necessary to accurately assess the impact of grid-design.  At computation times

exceeding 6 to 10 hours even on a dedicated workstation such Monte Carlo simulations are very

limited in the number of realizations.  The next chapter will introduce a numerical technique that

accelerates the numerical computation time by up to two orders of magnitude.  With such

improvements in the computational techniques, Monte Carlo simulations can easily be

implemented with hundreds of realizations.  Chapter 8 will present the analysis of unsaturated
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flow with multiple realization Monte Carlo simulations.
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Table 6.1:  Non-variable input parameters common to all simulations of the model verification

and grid design analysis.

input parameter model verification grid design analysis

mean logKs 5.5 5.5

variance logKs 0.09 4.0

mean log" -4.0 -4.0

variance log" 0.0009 0.25

saturated water content 0.3 0.3

residual water content 0.3 0.3
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Table 6.2:  Comparison of the sample mean; obtained from a single large scale simulation with

the analytical moments obtained from the 1st order perturbation analysis (chapter 4).

MEAN analytical-1st order simulation

logKs 5.500 5.513

logK 2.303 2.313

head [cm] -174.6 -174.3

hor. flux [cm] 0.000 -0.02264

ver. flux [cm] -10.00 -9.999

VARIANCE

logKs 0.08742 (0.09) 0.09148

logK 0.03488 0.03694

head [cm2] 16.59 15.92

hor. flux [(cm/d)2] 0.3828 0.3471

vert. flux [(cm/d)2] 0.5907 0.6708
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Table 6.3:  Comparison of the sample variance and correlation length for rectangular elements

(1st row) and square elements (2nd row).  Each column represents a different block-size

indicated in the top row.  All units are based on [cm] and [days].

rectang./square 4 x 2 cm2 8 x 2 cm2 16 x 2

cm2

8 x 4 cm2 16 x 4

cm2

32 x 4

cm2

F2 logK 0.440 0.410 0.388 0.387 0.353 0.339

0.439 0.406 0.385 0.385 0.350 0.338

F2 head 35.9 61.1 103 78.1 134 22.2

36.4 54.6 104 78.5 128 223 .1

F2 qh 5.20 4.85 4.07 4.61 3.95 3.08

5.38 5.12 4.46 4.78 4.19 3.39

F2 qv 8.85 6.22 3.74 8.16 5.28 2.72

8.85 6.73 4.12 8.17 5.74 3.07

8 logKs 31.8 63.6 127 .2 63.6 127 .2 254

31.8 63.6 127 .2 63.6 127 .2 254

8 logK 14.7 28.6 57.1 27.2 532 .6 110

14.7 28.5 57.3 27.2 523 .9 111

8 head 68.0 75.8 106 83.1 114 .4 183

68.7 66.3 105 83.3 111 .3 181

8 qh 14.3 23.1 37.9 26.7 42.7 73.0

14.1 23.+ 37.2 26.4 42.5 71.5

8 qv 10.0 17.4 27.1 19.0 31.3 48.8

10.2 17.8 26.1 19.3 31.9 45.4



Harter Dissertation - 1994 - 166

Figure 6.1: Matric potential distribution in a 3-layered soil column.  Layer 1 is a very low
permeable soil with small ".  Permeability and ".increase with each of the
subsequent two-layers.  Inversely, the nonlinear portion of the capillary fringe
decreases.  Layer 3 requires smaller discretization than layer 2 or layer 1 to
accurately capture the nonlinear portion of the matric potential curve.
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Figure 6.2: Overview of the simulation concept for the grid design sensitivity analysis.
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Figure 6.3: Two-point autocorrelation function of the random field for various relative
domain sized D/8.  The absolute domain size is 200 by 200 grid points.  The
autocorrelation function is computed by spatial averaging for lag-distances up
to half the length of the random field.
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F i g u r e
6.6: Normalized head variance as a function of  "g 8f, where 8f is the sample correlation

length of f = logKs.  Only simulations with block-size b=)x are shown.



F
ig

u
re

 6
.7

:

T
h

e 
n

o
rm

al
iz

ed
 h

ea
d

 v
ar

ia
n

ce
 a

s 
sh

o
w

n
 i

n
 F

ig
u

re
 6

.6
, 

b
u

t 
fo

r 
va

ri
o

u
s 

b
lo

ck
-s

iz
es

 b
: 

b
=

) x 
(1

el
em

en
t/

b
lo

ck
),

 b
=

2

) x 
(2

*
2

 e
le

m
en

ts
/b

lo
ck

),
 b

=
4

) x 
(4

*
4

 e
le

m
en

ts
/b

lo
ck

).

Harter Dissertation - 1994 - 172



Harter Dissertation - 1994 - 173

F i
gure 6.8: Vertical correlation length of the sample head values for each simulation.
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Figure 6.9: Normalized variances of the vertical (a) and horizontal (b) flux.  Results from
all simulations and from 7 of the 30 Monte Carlo realizations are plotted.  The
straight line below the numerical data is a first order perturbation solution.
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Figure 6.10: Vertical (top) and horizontal (bottom) sample correlation length of the vertical
velocity.  The solid line is obtained from the first-order perturbation analysis.
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Figure 6.11: Vertical (a) and horizontal (b) sample correlation length of the horizontal
velocity.  The solid line indicates the first order perturbation solution.
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Figure 6 . 1 2 :
Variance (a), vertical (b) and horizontal (c) sample correlation length of the unsaturated
hydraulic conductivity y = log K.  The solid lines represent the first-order perturbation
solutions derived in chapter 4.
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Figure 6.13: Envelope of all possible unsaturated hydraulic conductivity curves in run 1 of
the log"-case Monte Carlo simulation.
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Figure 6.14: The Lagrangian flux field equation (6-16) using sample parameters of the
saturated hydraulic conductivity (top) and of the unsaturated hydraulic
conductivity (bottom).
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Figure 6.15: Squared coefficient of variation of the vertical flux compared to 3/8 Ff
2 (top)

and to 3/8 Fy
2 (bottom); see equation 6-17.
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