
Harter Dissertation - 1994 - 263

9.  MONTE CARLO SIMULATION OF SOLUTE TRANSPORT

FROM SMALL SOURCES

IN DEEP, VARIABLY SATURATED SOILS

9.1 Introduction

Contamination of groundwater resources has been one the largest environmental

concerns of the last decade.   Most pollution sources, whether they are agricultural, domestic,

or industrial, non-point or point pollution sources, are at or near the surface.  Much of the

pollutants must therefore travel through the unsaturated zone between the surface and the

groundwater before reaching the water table.  A thorough understanding of the transport

processes in the unsaturated zone is essential to assess the contamination risk of groundwater

resources and to predict the travel time from a pollution source to a drinking water well.

The advection-diffusion equation (ADE, eqn. 5-1) is generally used to describe the

movement of solutes in the unsaturated zone.  Like the study of groundwater pollution the

assessment of solute and contaminant transport through the unsaturated zone is hampered by the

uncertainty caused by the heterogeneous structure of the geologic material.  However, the list

of soil properties that determines solute displacement and plume spreading includes more than

just the saturated hydraulic conductivity, since the unsaturated hydraulic conductivity depends

directly on the soil water tension or the soil water content.  In the previous chapter some of the

effects of soil spatial variability on the soil water tension and velocity distribution in the soil

were studied.  Field studies have shown that the heterogeneity of the soil moisture flux leads to

variable, time- and scale-dependent parameters in the ADE.

Stochastic transport models have been developed to describe average solute

displacement and plume  spreading in  variable flux fields  (e.g. Gelhar and Axness, 1983;

Dagan, 1982, 1984;  Neuman et al., 1987).  The objective of these stochastic models is to cast

solute transport in heterogeneous geologic media into an equivalent quasi-homogeneous ADE
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i.e., to define the mean transport velocity and the average plume-spreading in terms of the

statistical parameters that describe the spatially random velocity field.  Stochastic analysis of

transport in porous media such as Dagan (1984, 1988), Neuman and Zhang (1990), Rubin

(19990), Zhang and Neuman (1994c) suggests that the effective dispersion or "macrodispersion"

varies with time.  These models have primarily been developed and applied to transport in

groundwater, although they are in principle valid also for unsaturated flow.

Past efforts of modeling unsaturated solute transport have concentrated on the analysis

of one-dimensional transport in steady state flow fields.  A basic tenet of such models is the

assumption that the soil consists of an ensemble of independent, homogeneous vertical stream

tubes.  For each stream-tube, the vertical flow and transport parameters are defined randomly.

(Dagan and Bresler, 1979;  Bresler and Dagan, 1981;  Amoozegar-Fard et al., 1982;  Jury, 1982;

Simmons, 1982;  Jury et al., 1986;  Butters and Jury, 1989;  Destouni and Cvetkovic, 1989,

1991).  Horizontal solute displacement and lateral dispersion is neglected, an assumption that

has been found valid mainly in applications to field-scale solute transport from non-point

pollution sources through shallow soils.  Destouni (1992) incorporated the effect of vertically

variable saturated conductivity into the stream-tube model.

Field studies of multi-dimensional unsaturated transport have been documented by

Ellsworth and Jury (1991) and by Wierenga et al. (1991).  These studies have demonstrated the

limitations of one-dimensional unsaturated transport models if the lateral extension of the plume

is small relative to the depth of groundwater.  Lateral solute spreading and plume contraction

and expansion were found to be important mechanisms affecting the movement of the solute

plume.  The dispersion of solutes in a more general two-dimensional heterogeneous soil has been

studied numerically by Russo (1991) and by Russo and Dagan (1991) who suggested that

macrodispersion of unsaturated transport is amenable to the same stochastic transport analysis

as those known for aquifer contamination.  More recently, Russo (1993a) combined the three-

dimensional stochastic formulation of unsaturated flow in heterogeneous media by Yeh et al.

(1985a,b) with the Lagrangian transport analysis by Dagan (1982, 1984) to derive analytical
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expressions for the displacement of the center of a plume and the average plume spreading.  In

a complementary study, Russo (1993b) derived the temporal moments of solute arrival time in

a three-dimensionally heterogeneous soil based on the work by Cvetkovic et al. (1992).

Both spectral analysis of unsaturated flow and Lagrangian analysis of solute transport

are limited to mildly heterogeneous media with a normally distributed velocity.  The findings

in the previous chapter suggest that the velocity pdf is neither normally distributed nor well

described by the first order spectral perturbation analysis.  It was found that spectral analysis

may be much more limited with respect to predicting velocity moments than with respect to

predicting the soil water tension distribution.  While Russo's (1993a,b) analysis is a useful tool

for the validation of numerical models and to obtain approximate estimates, it may be

inappropriate for many field applications with highly heterogeneous soils.

In this study, transport through unsaturated soils is re-examined without assuming that

the spatial variability is small,  without limiting the study to  one-dimensional transport  of non-

point pollution, and without depending on the assumption that transport is ergodic, which is

invoked in the numerical  study by Russo (1991) and which is necessary for analytical results

such as those of Dagan (1984) to hold.  Going beyond these restrictions allows one to analyze

the behavior of plumes from sources of relatively small lateral extent occurring for example

under leaky storage tanks and damaged liner systems.  These sources can generally be viewed

as point-sources.  In contrast to solute plumes from non-point sources, the lateral solute

movement plays an important role for point source plumes and is a significant source of

uncertainty for transport models of heterogenous soils.  Solute transport from small sources in

heterogeneous porous media is not ergodic  i.e., the mean concentration derived stochastically

is not identical to the actual concentration.  Plumes from small sources (lateral extent on the

order of or smaller than the correlation scale of the soil hydraulic conductivity) require several

tens if not hundreds of correlation scales in mean travel distance before the ergodic condition

is met and the concentration variance vanishes.

Therefore the Monte Carlo technique is applied to study the spatial and temporal
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variability of non-ergodic solute plumes in variably saturated porous media.  A variety of

different hypothetical soil sites is investigated to establish a stochastic analysis of the solute

concentration, the solute flux, and the solute plume spreading as a function of the various

independent parameters characterizing a spatially variable soil.  For efficiency, the two-

dimensional steady-state head and velocity distribution in a vertical soil profile is computed

using the ASIGN approach (Harter and Yeh, 1993; see chapter 7).  For each realization of a

velocity field the movement of a small plume through the soil is predicted as a function of time.

From a set of 300 realizations within each Monte Carlo simulation the local concentration

moments (mean and variance) are computed over time, the first and second moments of each

individual plume are monitored over time, and solute flux is recorded and statistically analyzed

as a function of location and time. The technical implementation and design of the Monte Carlo

simulations is described in section 9.2.  In section 9.3, the results for the concentration moments

and the solute plume spreading are reported and compared to the linear macrodispersion model

by Dagan (1988).  In section 9.4 solute flux and travel time in various soils are investigated and

compared to the Lagrangian particle travel time model by Cvetkovic et al. (1992).  Both the

linear macrodispersion model and the Lagrangian travel time analysis are coupled with the

linearized first order perturbation analysis of unsaturated flow described in chapter4.  The

chapter ends with summary and conclusions in section 9.5.
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9.2 Implementation of the Monte Carlo Simulation and Statistical Methods

9.2.1 Transport Model

The same Monte Carlo procedure as described in chapter 8.2 is used for the stochastic

analysis of transient transport.  The procedure described in 8.2 computes steady-state,

unsaturated velocity fields v(x) given spatially correlated random realizations of f and a with

means F, A, variance Ff
2, Fa

2, and an exponential spatial correlation characterized by the

horizontal and vertical correlation scales 8fx and 8fz, respectively.  For each realization of v(x),

transient transport is simulated with an algorithm based on the modified method of

characteristics (MMOC) and described in Yeh et al. (1993).  Chapter 5 gives an overview of the

numerical procedure and describes the particular implementation used for this study.  In this

chapter, only transport of non-reactive solutes is analyzed.  Recall from chapter 5 that only

advective transport is computed (for efficiency), while local or "pore-scale" dispersion is

introduced through numerical dispersion.  The effective equation solved by MMOC given a

random realization v(x) of the velocity field is:

Although the numerical dispersion  Dnum(x)  cannot be rigorously quantified, preliminary

numerical experiments showed that the resulting effective local dispersivity  dnum= (Dnum / Vz)

is on the order of 1/10 to 1/100 of the element size and therefore much smaller than the

correlation scale  of the velocity variations (see chapter 8).   Vz is the mean vertical velocity.

It will be shown later that the effective local dispersivity is only of minor importance for the

overall plume movement.   The main contribution of the  effective local  dispersivity is limited

to the first few time steps i.e., very early time (tn8fz/Vz).  At early time an initially small plume

with uniform concentration c0 is numerically dispersed over a larger area due to the sharp

concentration gradient at the boundary of the plume.  Numerical dispersion is caused by the

bilinear interpolation scheme employed in the modified method of characteristics to compute
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the concentration at locations not identical to those of finite element nodes.  At later times, the

concentration gradients are much smaller, and the plume movement is dictated predominantly

by advective processes.  While numerical dispersion is artificial, its net effect is consistent with

many field findings and with the stochastic transport theories of Gelhar and Axness (1983), and

Neuman et al. (1987), which explicitly account for pore-scale dispersion.  Implicit (numerical)

or explicit (parametric) local dispersion is expected to affect primarily the local concentration

variance (Dagan, 1982) and the asymptotic (i.e. late time) magnitude of the lateral

macrodispersion (Gelhar and Axness, 1983;  Neuman et al., 1987).

9.2.2 Moment Analysis

In this analysis, the statistical description of three phenomena associated with solute

transport is addressed:  the statistical analysis of the spatial moments of the actual concentration

plumes, the statistical moments of the local concentration, and the statistical moments of the

solute flux at a given distance from the plume source.  The first two phenomena are closely

associated with the concept of macrodispersion (Dagan, 1982, 1984, 1988;  Gelhar and Axness,

1983;  Neuman et al., 1987) and are grouped together in the spatial analysis of solute transport.

The latter analysis is often treated separately and deals primarily with the statistical analysis of

particle travel times to a given distance from the source of the contamination (Cvetkovic et al.,

1992; Russo, 1993b).  Only recently, the spatial and temporal analysis of solute transport has

been treated in a unified manner both numerically and analytically (Bellin et al., 1992;  Zhang

and Neuman, 1994a-d)
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9.2.2.1 Spatial Concentration Distribution

Concentration is a non-stationary random field variable (RFV, see section 2.5.1) in

space and time.   Spatial plume  moments  and local statistical moments of  the concentration

distribution are therefore RFV functions of time.  In this analysis the computation of the local

concentration sample mean <c(x,t)> and of the local sample variance Fc
2(x,t) is limited to four

discrete points in time (see below).  The computation of local concentration moments is

equivalent to the computation of local head sample moments (see chapter 8).  No covariances

and cross-covariances are computed.  The spatial moments of the mass distribution in each

solute plume are computed at each time-step of each realization.  The zero order, first order, and

second order spatial moments of an actual  concentration plume are given as:

M0(t) is the total mass  in the finite element domain,  where the finite element domain consists

of NN nodes connecting rectangular elements of sidelength )x and )z.  2(xi) is the arithmetic

average of the  water content in the four  elements surrounding node i.   In this study 2 is

assumed constant throughout the domain (chapter 8).  Mx(t) and Mz(t) are the horizontal and

vertical position, respectively, of the center of mass of the plume c(x,t).  Mxx(t) and Mzz(t) are

the horizontal and vertical moment of inertia, respectively.  The moment of inertia is a measure
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of the average plume spreading around the center of mass.  The five spatial moments in (9-2) are

computed for each time-step of each realization in the Monte Carlo simulation.  Similar to the

concentration moments, the spatial plume moments are a random process indexed on the real

line representing time (see section 2.5).  From the realizations of the random, time-dependent

moment functions, sample means and sample variances are computed at 500 equal-distanced

time intervals distributed over the total amount of simulation time (see below).

Due to the principle of mass conservation the sample mean <M0(t)> must be constant

with time during the early part of the simulation when the solute plume is entirely confined

within the boundaries of the finite element domain.  Any variance in M0(t) > 0 would indicate

mass balance errors due to the numerical transport solving method.  Computing the variance of

M0(t) is therefore an important opportunity to assess potential mass balance errors in MMOC.

The expected values of the first spatial moments, <Mx(t)> and <Mx(t)>, are a measure of the

average plume displacement and must coincide with the center of mass of the mean plume

concentration <c(x)>.  The mean of the second spatial moment <Mii(t)> (i=x,z) is a

representative measure of the average spreading of the plume around its centroid.  <Mii(t)> is

not identical to the second moment Xii(t) of the mean concentration plume (c.f. Dagan, 1990).

The first and second spatial moment Xi and Xii of the mean concentration plume <c(x,t)> are

computed as in (9-2) with c(x,t) replaced by <c(x,t)> and M replaced by X.  From statistical

principles for turbulent mixing (Fischer et al., 1979), illustrated by Kitanidis (1988) and Dagan

(1990) for porous media transport, it follows that Xij and <Mij> are related through:

where var(Mi) is the sample variance of the first spatial moment Mi.  var(Mi) is a measure of the

uncertainty regarding the actual center of a solute plume.  Hence, the  spatial spreading of the

mean concentration plume Xii is the sum of the expected moment of inertia of the actual plume

plus the uncertainty about the center of mass of the plume (Figure 9.1).  A general result of

stochastic transport analysis is  the fact that only for plumes of large initial lateral spreading or
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at very late times the uncertainty regarding the center of the plume vanishes relative to the size

of <Mii>.  Then <Mii > and Xii  become interchangeable.  Such a plume is called ergodic (chapter

2).  

9.2.2.2 Solute Flux Characteristics

While much research has been devoted to define the spatial concentration distribution

in terms of <c(x,t)> and Fc
2(x,t), the stochastic analysis of the solute mass flux s(x,t) has only

recently been investigated (Dagan et al., 1992;  Cvetkovic et al., 1992, Russo, 1993;  Neuman,

1993;  Zhang and Neuman, 1994c).   Solute mass flux is an  important variable in many

regulatory applications, where interest is not so much focused on the spatial distribution of a

contamination plume, but on the temporal distribution of solute mass flux across a compliance

boundary.  It is of particular interest in the study of unsaturated transport, since a common

remediation and site assessment question is:   When, where, and how much solute mass will

arrive at the water table?  What is the uncertainty of the prediction due to variable travel times

that are caused by the spatial heterogeneity of the soil?

Solute flux s(x,t) is defined as the mass of solute per unit area and unit time passing

through a surface element of unit normal 0.  Neglecting pore-scale dispersion, it can be related

to the resident concentration c(x,t):

(9-4) is adopted specifically for use in the numerical model, such that s(x,t) can easily be

computed from the resident concentration c(x,t).  The definition of (9-4) yields a flux-averaged

concentration cq = m( s 0 dA )/ m (2e v 0 dA) equal to the resident concentration.  Setting the

flux averaged concentration equal to the resident concentration is justified since the advective

mass flux is much larger than the dispersive mass flux (Parker and VanGenuchten, 1983).  No

diffusion is included in these simulations and since the effective dispersion is related to the
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seepage velocity, the effective dispersive mass flux is always smaller than the advective mass

flux.

In this study, a number of statistical tools are employed to analyze solute flux at a given

compliance surface CS (CS reduces to a line CL in two dimensional transport).  The total solute

mass flux S(t) is the integrated mass flux across the compliance surface:

where NC is the number of finite element nodes along the horizontal CS and )xi is the average

element width to the left and right of node i,  in other words, the concentration is linearly

weighted between nodes.  The mean <S(t)> and variance FS
2(t) of S(t) are computed from the

individual realizations of the integrated mass breakthrough curves S(t).  For this study, four CLs

are defined at dimensionless vertical distances Z' = Z/8fz = 5.4, 11.6, 17.8, and 23.8 from the

solute source area.

In addition to the stochastic  analysis of total mass breakthrough S(t), a stochastic

analysis of solute mass flux arrival time ta(x,s0), and solute peak flux time tp(x) is undertaken.

The solute mass flux arrival ta(x,s0) is the time at which the solute mass flux s(x,t) first exceeds

some compliance mass flux s0 at the location x on the CL.   Nineteen different s0 are defined (see

below) for each of which, the mean <ta(x,s0)>, <td(x,s0)> and the variance varta(x,s0), vartd(x,s0)

are computed.  The peak flux time tp(x) is equal to the time of highest concentration or peak

solute flux, since the velocity field is at steady-state.  The moments of the arrival and peak time

are investigated only at one horizontal compliance surface in the center of the simulation

domain.  The results are normalized with respect to the constant water content 2 and the mean

vertical velocity Vz.  A more detailed discussion of the physical importance of these temporal

moments is given in the analysis of the results.

9.2.3 Parameters and Model Design
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The numerical simulations are implemented for a soil cross-section that is 12.8 m deep

and between 7.6 m and 30 m wide depending on the expected horizontal solute spreading.  The

model simulates the instantaneous injection of a small source solute slug into the soil by

specifying an initial concentration c0 = 1 for a horizontal rectangle of 3 by 2 nodes

(concentration is specified as a nodal property in the MMOC algorithm).  The total applied mass

therefore depends on the chosen grid-discretization.  Since all results are normalized with

respect to the total mass or the initial concentration, the results are only dependent on the ratio

between the initial plume size and the correlation scale of the soil texture.

For the transport simulations a subset of the different soil-types investigated in the

previous chapter is selected.  All soils investigated here have a hypothetical vertical correlation

length 8fz=50 cm.  The horizontal correlation length 8fh varies from 50 cm to 300 cm.   The

discretization of the domain is 10 cm in the vertical.  The horizontal discretization is 10 cm for

8fh=50 cm, 15 cm for 8fh=150 cm, and 30 cm for 8fh=300 cm.  Thus the size of the initial solute

slug relative to the correlation scale  of the saturated hydraulic  conductivity is 40% in the

vertical; 60% in the  horizontal for the isotropic soils,  and 30% in the horizontal for the

anisotropic soils.  The total size of the finite element domain is 128 elements vertically and

between 76 and 100 elements horizontally.   The horizontal domain  size was chosen such that

the solute plume would not spread beyond the vertical boundaries of the finite element domain.

An overview of the different hypothetical soils is given in Table 9.1 together with the actual size

and discretization of the respective flow and transport models.  The same soil mc3 is used as

base soil site as in the flow analysis (isotropic, unit variance in f).  The variance of f varies from

0.01 to 4, the variance of a from 0.0001 to 0.04.  The correlation Daf between f and a is either 1

or 0.  The geometric mean of " (=') is always 0.01 cm-1.  The average water tension varies from

-150 cm to -3000 cm.

As for the flow analysis in chapter 8, the boundary conditions imposed on the solution

of the steady state head field are of the random Dirichlet type.  The random head boundaries are

obtained from the first order spectral solution for the head given the particular realization of f
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and a.  From the previous chapter it is known that the first order head boundaries significantly

alter the velocity distribution in the vicinity of the boundary.  These boundary effects would

adversely affect transport across or near the boundary.  To avoid the erroneous impact of the first

order boundary, the solution of the flux is separated from the transport simulation.  Steady-state

flux is obtained for a finite element domain that is five to ten elements larger around each side

than the finite element domain for the transport simulation.  In other words, the boundaries of

the transport model are located in the interior of the flow model.  The size of the peripheral "cut-

out" within the flow-model is determined from the results of the previous flow analysis (chapter

8, Figure 8.14).  The number of rows or columns cut off of each side of the flow field is

indicated in the right column of Table 9.1.  For the transport model itself, no boundary

conditions are necessary, since only advective transport is solved.  The Monte Carlo simulations

are based on 300 realizations of each soil site.

The previous chapter elucidated the dependence of the velocity field and its spatial

variability upon the various parameters governing  unsaturated flow.   The spatial variability of

the velocity field controls the uncertainty (or spatial variability) of solute flux and the solute

concentration distribution through the physical dependence of concentration upon velocity

expressed in the transport equation (eqn. 5-1).  The velocity field is controlled by Darcy's law,

and hence by the  spatial variability of the  unsaturated hydraulic conductivity y.   The latter is

the single most important parameter used to describe or predict the uncertainty in solute

transport.  Its spatial variability, as described in chapter 8, depends on the variance of the

independent input parameters f and a, on their correlation scale and anisotropy ratio, and on the

mean soil water tension H.  For the evaluation of the transport simulation, the soils are therefore

grouped into four categories, each of which addresses the sensitivity of stochastic transport to

one specific parameter:

1. category:  isotropic, wet soil:  #2, #8, #3, and #9.  Only the variance of f and a change.  The

actual average sample variance of f is 0.01, 0.11, 0.95, and 3.62, respectively (see

chapter 8).  The variance of a is 10-4, 10-2, 10-2, and 4*10-2, respectively.
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2. category:  anisotropic, wet soil:  #12, #29, #28, #22.  Again, only the variance of f and a

change.  For #29, #28, and #22, the variances of f and a are 0.95, 2.15, 3.67, and 10-2,

4*10-2, 4*10-2, respectively.  #12 and #29 have identical parameter variances, but unlike

all other example  soils #12 has perfectly correlated  f and a random fields,  which

slightly reduces the unsaturated hydraulic conductivity variance relative to #29 (see

chapter 8).

3. category:  Ff
2=1, wet soil:  #3, #31, #29.  Only the horizontal correlation scale of f (and a)

change:  For the three soils they are 50 cm, 150 cm, and 300 cm which results in aspect

ratios < = 8fh/8fz = 1, 3, and 6, respectively.

4. category:  anisotropic dry soil:  #15 and #21.  These are both dry soils with mean soil water

tensions H of -1000 cm and -3000 cm, respectively.  The first soil is otherwise the same

soil as #29, while the second soil is otherwise identical to #12, which has perfectly

correlated f and a random fields.  The two dry soils are contrasted with two wet soils of

similar unsaturated hydraulic conductivity variance to investigate whether unsaturated

transport can be characterized by Fy
2 and Cyy alone:   #15 is contrasted with #28 (Fy

2=1.5

and 1.8, respectively), #21 is contrasted with #22 (Fy
2=3.2 for both).

9.3 Spatial Analysis of Solute Transport under Uncertainty

9.3.1 General Characteristics of Solute Movement and of its Statistical Representation

The dynamics of the spatial distribution of solute concentration in unsaturated porous

media and its  direct dependence on the  variability in  velocity is illustrated  in Figure 9.2 for

three anisotropic soils with distinctly different Fy
2.  In mildly heterogeneous soil the streamlines

are more or less vertical (Figure 9.2a).  Deviation from a parallel vertical flow pattern becomes

stronger as the variability of y increases (Figure 9.2b,c).  In more heterogeneous soils

streamlines tend to cluster in preferential flow areas, and show a large variability over short

distances.  If the soil is very heterogeneous, the streamlines may exhibit a horizontal
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displacement of several meters (a few correlation scales, Figure 9.2c).  Relative to its entry

position, the maximum observed total horizontal displacement  of a streamline at the bottom of

the 12 m deep vertical section is 1 to 2 m for Fy
2=0.74 (soil #29),  on the order of 5 m for

Fy
2=1.48, and on the order of 10 m for Fy

2=3.20.  While the single realizations of streamlines

depicted in Figure 9.2 bear limited statistical significance, they clearly illustrate the degree of

uncertainty associated with making predictions about the travel path of a small solute plume and

help to understand the results of the stochastic transport analysis.  These examples also illustrate

that parallel streamtube models are limited in their applications when modeling solute transport

from point sources, because they neglect the horizontal displacement of solutes. 

The individual solute plumes (Figure 9.2d-f) show the combined effects of travel path

variability, local dispersion and travel velocity variability.  Since the plume center of mass is an

integrated measure of the entire plume displacement, its travel path varies less than the

corresponding streamlines.  With increasing variance, the solute plumes assume increasingly

erratic shapes, and for the same travel time, the travel distance of the plume center of mass

becomes more variable.  The peak concentration of the plume strongly depends on the total

travel distance of the individual plume.  If the solute is initially placed into an area of low

unsaturated permeability, the plume will travel only slowly for an extended period of time and

disperse very little i.e., the peak plume concentration will remain high.  In contrast, a solute

plume that is initially placed into a relatively high permeability area will travel quickly, disperse,

and the peak concentrations will drop rapidly.

The mean concentration from the Monte Carlo simulation (Figure 9.2g-i) indicates the

stochastically predicted location and spreading of the solute plumes at t'=10 (t'=8fz/Vz), the same

time at which the snapshot of the actual plumes (Figure 9.2d-f) are taken. As expected, the mean

plumes exhibit more spreading and lower peak concentrations than the actual plumes due to the

variability var(Mi) (i=x,z) in the travel path of the plume center (9-3).  For strongly variable soil

flux (Fy
2>1), Figure 9.2i qualitatively illustrates how var(Mi) contributes significantly to the total

spreading Xii of the mean concentration plume.  In that case Xii is a poor measure of the "typical"
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solute distribution Mii (Kitanidis, 1994).

Small irregularities can be seen in the contours due to the random nature of the sample

mean (Figure 9.2g-i).  The irregularities in the mean plume shape and the skewness of the mean

concentration along the vertical axis are more notable at higher Fy
2, since the potential error of

the sample mean concentration increases with increasing velocity and concentration variance.

For Fy
2 > 1, the Monte Carlo simulations (which are based on 300 realizations) become

potentially very sensitive to outliers.  Those realizations with very small unsaturated hydraulic

conductivities at and/or immediately around the source produce solute plumes which move

extremely slow and therefore have peak concentrations close to the initial concentration

throughout the entire simulation time (Figure 9.3).  Even one realization with a very slow

moving plume may significantly bias the arithmetically averaged concentration at later times,

since otherwise the concentration at the source quickly drops by several orders of magnitude.

In the example problems all simulations with  Fy
2 > 1.5 show significant 'residual' mean

concentrations at the source or within 1 correlation scale distance of the source.  In this context,

'significant' is defined as any concentration larger than approximately 1/100th of the observed

peak concentration.  In these cases the concentration contours in the immediate vicinity of the

source are also erratic and must therefore be attributed to outliers (see e.g. Figure 9.2h).

To investigate the accuracy of the sample mean concentrations calculated from 300

realizations, the rate of convergence in the Monte Carlo simulation is demonstrated for the most

variable soil in this study (#21, Fy
2=3.2) i.e., the soil for which the sample error is the largest.

Figure 9.3 shows the mean concentration at four different times computed from 300 realizations

(Figure 9.3a-d) and from 100 realizations (Figure 9.3e-h).  The contour map for 300 realizations

is significantly smoother than the contour map for 100 realizations.  Near the source and at the

outermost contour level (<1% of peak mean concentration) the sample accuracy appears to be

the least.  Otherwise the dominant features of the mean plume are well-defined when based on

300 realizations.  With only 100 realizations, the general pattern of the mean concentration

distribution can already be seen, but there is also a large degree of erratic spatial variability.  It
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is obvious that hundreds (if not thousands) of additional realizations would be necessary to

completely remove the secondary peak near the source caused by an outlier within the first 100

realizations.  However, 300 realizations are considered adequate to give relatively accurate

results for the spatial moments of the mean plume and the mean breakthrough curve and its

variance, because they are integrated measures.  They are also adequate to give an approximate

description of the spatial mean concentration distribution (Figure 9.3a-d,i).

  Therefore it appears that the skewness in the vertical distribution of the mean

concentration, which increases with Fy
2, cannot be explained as an outlier problem.  Another

explanation for the skewed mean concentration distribution must be sought.  Recall that the

longitudinal velocities have approximately a lognormal pdf (chapter 8).  The theory by Neuman

(1993) and the results of Zhang and Neuman (1994d) show that a lognormal velocity pdf indeed

causes a skewed shape of the concentration plume at early travel time.  Zhang and Neuman

(1994d, Figures 1 and 2) indicate that the skewness of the mean concentration plume vanishes

after only one correlation scale in travel distance.  However, their examples are for mildly

heterogeneous media, in which case the Monte Carlo simulations here also produce a Gaussian

mean concentration distribution (Figure 9.2g,h).  For highly heterogeneous soils (Fy
2=3.2), the

skewness of  the concentration plume  along the longitudinal direction is very strong even at

t'=10.  Only at t'=20 the skewness appears to converge towards a more Gaussian distribution

(Figure 9.3c).  For soil site #15 (Fy
2=1.5), the skewness is very strong at t'=5 (not shown), but

has almost disappeared at t'=10 (Figure 9.2h).

These observations have a significant practical aspect.  The relatively high 'residual'

mean concentrations at t'=10 for the large variance soils #9, #21, and #22 (Fy
2>3) (see e.g. Figure

9.3) suggest that several hundred correlation scales of travel distance may be required before a

solute plume achieves ergodicity.  The use of stochastic transport models that are based on the

ergodicity assumption is therefore not justified for small plume sources and highly variable soils,

since the unsaturated zone is either not that thick or it is unlikely to be characterized by a

stochastically homogeneous random medium throughout its vertical extent.
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The variability of the concentration from realization to realization is illustrated by the

variance maps (Figure 9.2k-m).  The concentration variance, however, is not a good measure of

uncertainty since the mean concentration is nonstationary.  The concentration variance is largest

near the center of the mean concentration plume simply because the concentrations are largest

at the center of the plume.  Also note that the largest variances are found in the second of the

three example soils, which exhibits a Fy
2 of less than half the largest Fy

2 in the three examples

of Figure 9.2.  Intuitively it would expected that the uncertainty increases with Fy
2.  The

discrepancy in the behavior of the peak variance is due to the fact that at higher Fy
2 the peak

mean concentration decreases thus countering the overall increase in concentration variability.

Another problematic aspect of the concentration variance is that it is even more sensitive to

outliers than the concentration mean due to its second order nature (e.g. Figure 9.2l).  A

considerably better measure of uncertainty is the concentration coefficient of variation CVc(x,t):

where < > refers to sample averages and the evaluation is at x and t.  The CVc measures the

variability of the concentration at location x and time t not in absolute terms but relative to the

mean concentration at the same location and time.  Unlike the concentration variance, the CVc

has a minimum at or near the location of the peak mean concentration and increases with

distance from the plume center.  This is consistent with the analysis of concentration variability

in saturated transport (Dagan, 1984;  Rubin, 1991b).  In terms of CVc the uncertainty about the

high concentrations in the  center of the plume is the  lowest while uncertainty  about the very

low mean concentrations at the edges of the plume is highest.  The added advantage of using

CVc instead of Fc
2 as a measure of uncertainty is its inherent ability to neutralize outliers of the

type discussed above.  Outliers not only increase the concentration mean but also the

concentration variance near the plume source.  The resulting CVc remains very high (as

expected) relative to the CVc at the plume center.  Overall the lower CVc is much less sensitive
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to sampling error than either the variance or the mean.

The general shape of the CVc  plume shows a  similar sensitivity to soil heterogeneity

and soil moisture as the mean concentration plume.  At the plume center the CVc  increases with

Fy
2 while it decreases at the periphery of the mean plume location (see chapter 10).  With

increasing aspect ratio vertical spreading decreases and horizontal spreading increases.  The

large CVc (o1) in all areas except the plume center is yet another indication that the

concentration RFV c(x,t) is not Gaussian distributed.  Cushey et al. (1993) have also shown that

the concentration in porous media has a non-Gaussian pdf.  These findings must be taken into

consideration when it comes to the practical meaning of both mean concentration and

concentration coefficient of variation (or the concentration variance).

9.3.2 The Minimum CVc - an Empirical  Stochastic Analysis

As expected, the minimum CVc (used as an indicator of the overall uncertainty)

increases with  the textural variability of the soil expressed by Ff
2 (Figure 9.4a,b).  Surprisingly,

the minimum CVc in the  Ff
2=0.01 soil is still significant  throughout the simulated time-span

(.0.2).  On the other end of the scale, the largest observed minimum CVc are for anisotropic

soils of high variability in y and do not exceed 1.6 (#21, Figure 9.4c).  The location of the

minimum CVc coincides with the location of the maximum mean concentration only for the two

plumes with Ff
2<0.15.  For all other soils, the minimum CVc location is lower than the point of

maximum mean concentration (Table 9.2).  Generally the distance between the two is less than

18fz.  But for t'=20 the distance may be from 28fz to 108fz, depending on the soil variability.

Non-Gaussian vertical velocity pdfs and higher variability of the soil flux causes stronger

skewness of the vertical mean concentration plume and larger distances between the two

locations of maximum concentration and minimum CVc.

The results are consistent with the theoretical findings of Rubin (1991b), who estimated

the concentration mean and concentration coefficient of variation in a mildly heterogeneous
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saturated porous medium (Fy
2 = 0.21).  Under the assumption that the velocity pdf is Gaussian,

it was concluded that the highest concentration variance and lowest CVc coincide with the center

of the mean concentration plume.  The results here illustrate that Rubin's conclusion does not

extend to porous media of higher variability and lognormally distributed velocities, where the

minimum CVc location has travelled further than the peak mean concentration location.  The

results are in contrast with those of Zhang and Neuman (1994d, Figure 1).  In their analysis of

solute transport with lognormally distributed longitudinal velocity, they came to the same

conclusion as Rubin (1991b) i.e., the lowest CVc occurs at the location of the largest <c>.  Again

it should be noted that their result is obtained for a mildly heterogeneous porous medium.

Unfortunately, no information on the CVc is available for t'<5 or at any other times

besides those at which  the concentration  distribution is recorded (t'=5,10,20,40;  in case #28:

t'=4, 8, 16, 31;  t' = 8fz/Vz).   For illustration purposes  the three data points of  each soil site

shown in Figure 9.4 are interpolated with a 3rd order polynomial on the interval t'=[4,20].  The

CVc decreases with time or remains almost constant in the isotropic soils (category 1, Figure

9.4a), but initially  increases and later  remains constant or  decreases again in the anisotropic

soils (category 2, Figure 9.4b).   The minimum CVc at  t'=5 is higher  in the isotropic soils than

in the anisotropic soils (category 3, Figure 9.4c).  At later times (t'=10, 20) the observed

difference in CVc for different aspect ratios decreases, and in some instances the anisotropic soil

will have a higher CVc than the isotropic soil of comparable textural variability (compare

Ff
2=3.6, isotropic/anisotropic soils, Figure 9.4a,b).  At the last output time (t'=40) all or most of

the plume has passed through the domain, and the actual minimum CVc of the plume cannot be

observed.  For soils of comparable  Fy
2, but different mean head (4th category), the temporal

dynamic and magnitude of the minimum CVc is very similar but not identical (Figure 9.4d).

In contrast to these findings, other analytical studies (Rubin, 1991b) and field analyses

(Barry and Sposito, 1990), both for transport in the saturated zone, report a steady increase in

the CVc with time (maximum analyzed travel distance approximately 408).  The argument was

made that the deterministic effect of the source shape and location of the plume wears out over
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(9-7)

time.  Thus one would observe increasing prediction uncertainty.  Observations here suggest that

the minimum CVc in the tested soils may reach a maximum around or before t'=20, then decrease

at a slow rate.  However, the record is too short to be conclusive.  In addition, the time span of

the initial increase in minimum CVc seems to be strongly influenced by the aspect ratio of the

anisotropy and by the variance of the unsaturated conductivity.

9.3.3 Spatial Spreading of the Mean Plume, Mean Spatial Spreading of Plumes, and

Variability of the Plume Center of Mass

In this section the stochastic dependence of the three moments Xjj, var(Mj), and <Mjj>

(j=x,z) on the heterogeneity and moisture content of the unsaturated zone is examined under

fully nonlinear conditions (numerical Monte Carlo simulations).  The results are used to assess

the validity of what is called the linear macrodispersion theory.

Until recently, the thrust of stochastic analyses regarding transport in heterogeneous

porous media has not so much dealt with the mean concentration and concentration variance

itself, as it has focused on the second spatial moment or moment of inertia Xjk of the ensemble

mean concentration plume (9-2).  Under the assumption of normally distributed velocities, the

spatial distribution of the mean concentration is Gaussian, and Xjk  is then intrinsically related

to the apparent Fickian macrodispersion Djk through:

With the aid of the time-dependent macrodispersion coefficient, the ensemble mean

concentration can be estimated through a quasi-Fickian analysis i.e., by solving (5-1) or (9-1)

with D(t) = Djk(t) + Dd  in lieu of D = Dd , where Dd is the local (small-scale) dispersion

coefficient.  In all linear theories of macrodispersion (Gelhar and Axness, 1983;  Dagan, 1984,

1988;  Neuman et al., 1987), the second moment (moment of inertia) of the mean concentration
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plume is estimated analytically based on the following fundamental result of turbulent diffusion

(Dagan, 1984, eqn. 3.20, 1988, eqn.3, A2;  here formulated for two-dimensional, vertical,

uniform flux):

where j = x,z and Vz is the mean velocity in the vertical direction.  Cvj.vj is the covariance of the

velocities at two locations x' and x'' corresponding to mean displacement at t' and t'', respectively.

x' and x'' are assumed to be located along the travel path of the mean solute plume.  This latter

assumption is the most important restriction to the analysis, since it neglects any deviation of

the actual plume from the mean travel path.  Neuman and Zhang (1990) and Neuman (1993)

have overcome the assumption by using a quasi-linear analysis and a Eulerian-Lagrangian

approach, respectively.  Equation (9-8) also assumes both Eulerian and Lagrangian stationarity

of the velocity field (Dagan, 1988).

The stationarity conditions are met in the numerical transport simulations under

investigation.  Also, in chapter 4 the second moment Cvj.vj of the velocity is derived to first order

for soils of arbitrary covariance functions in f and a.  The velocity covariance function is

obtained from a spectral analysis and a numerical fast Fourier transform of the resulting spectral

density function.  The mean travel velocity is given to first order in (4-43, 8-16).  The second

spatial moments of the mean plume (9-8) can therefore be readily computed.  The validity of the

linear macrodispersion theory over a wide range of soil heterogeneity is analyzed by comparing

the analytical with the numerical results.

Since all example soils of the Monte Carlo analysis assume the same correlation

functions for the input RFVs f and a (identical correlation scales), the covariance functions Cyy,

Cv1.v1, and Cv2.v2 and by virtue of (9-8) also the spatial moments Xzz(t) and Xxx(t) are directly

proportional to the variance factor F2  (see chapters 4 and 8):
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H' = .'H is a dimensionless form of the mean soil water tension.  The spatial moments can

therefore be normalized with respect to four of the input parameters:  the correlation between

a and f, Daf, the ratio between the standard deviations of a and f, ., the mean head, H, and the

input variance of f, Ff
2, and of a, Fa

2.  The remaining input parameters are the geometric mean

of ", ', and the vertical and horizontal correlation scales of f,  8fz and 8fx.  ' is constant

throughout all simulations.  The dimensionless spatial moments Xzz' = Xzz/(8fz
2 F2) and Xxx' =

Xxx/(8fz
2 F2)  for the three  different anisotropy ratios in  Table 9.1  give the  analytical solution

(9-8) to all hypothetical soils investigated here (Figure 9.5a,b).  The initial dimensions of the

plume are negligible for all but the least variable soil (Ff
2=0.01) and are not taken into account

in Figure 9.5.

As the aspect  ratio < increases, the longitudinal,  vertical spatial spreading  Xzz'

computed from (9-8) decreases considerably.  This is consistent with the theoretical results for

three-dimensional saturated porous media (Dagan, 1988).  At early time, the transverse,

horizontal spreading Xxx' is smaller in soils with larger <.  But the less anisotropic the soil, the

earlier it reaches its maximum transverse macrodispersivity, which is also higher.  Hence, at late

time Xxx' is larger for soils with higher transverse anisotropy.  The theoretical impact of

anisotropy on  Xzz' and Xxx'  is considerably stronger  than in three dimensions  (compare to

Russo, 1993a, Fig. 7).  From the corresponding curves for the apparent longitudinal and

transverse macrodispersivity Djj' = 0.5 Xjj' / t' (Figure 9.5c,d) it is obvious that the asymptotic

apparent macrodispersivity will only be reached after 100 to several hundred correlation scales

travel distance.  In a three-dimensional medium, the asymptotic value is reached significantly

earlier (Russo, 1993a, Figure 8).  The right vertical axis in Figure 9.5c,d is scaled to give the

actual macrodispersivity "jj for soils with Ff
2=1, 8fz=50 cm, H=-150cm, '=0.01 1/cm, .=0.1, and

Daf=0 (soils #3, #31, #29).  The asymptotic longitudinal macrodispersivity for these soils is 51

cm, and the maximum transverse dispersivity varies from 3 cm in the isotropic soil to 1.7 cm in
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the most anisotropic of the three soils.   None of these theoretical results considers local

dispersion i.e., Dd = 0.

From the linear theory, the spatial moments of the mean plume are expected to increase

as the soil dries out, if Daf=0 (9-9).  For correlated soils (Daf=1) the variance of y and hence the

solute spreading decreases as the soil begins to dry out, reaches a zero variance at H' = 1 (9-9),

and then increases for very dry soils (Figure 9.5e).  Note that the variance of the correlated case

reaches 0 only if the correlation functions for a and f are identical. The effect of decreasing soil

moisture and increasing soil water tension becomes significant for H' > 0.01.  At high soil water

tensions H' > 100 the correlation between f and a plays an insignificant role and the scaling

factor F2 grows with ( H'2 Ff
2 ).

Figure 9.6 shows the results for the spatial spreading Xzz' and Xxx' of the mean

concentration plume in the numerical simulations.  The results are shown separately for the four

different simulation categories.  For the isotropic soils, the fully non-linear solution deviates

strongly from the linearized analytical solution for all Ff
2 n 1 due to the influence of local

dispersion (whose dimensionless magnitude increases with 1/Ff
2 as Ff

2 -> 0). The smaller the

variability of the soil, the larger are both the longitudinal and transverse spreading relative to the

theoretical result.  For Ff
2=0.95, the actual longitudinal spatial spreading of the mean

concentration is very close to, but slightly smaller than the analytical solution.  At higher soil

variability the numerical results again increase relative to theory.  However, for Ff
2=3.6 the mean

concentration plume reaches the outflow boundary very early resulting in an artificial deviation

from the expected behavior in both the transverse and longitudinal spreading.  For the

anisotropic soils (second category), the lowest variance is Ff
2=0.95 and as for the isotropic soils,

an increase is observed in both the horizontal and vertical spreading with increasing soil

variability.  In contrast to the isotropic soils, the dimensionless vertical (longitudinal) spreading

is much larger relative to the linear macrodispersion theory, even for Ff
2=0.95, since the decrease

in longitudinal spatial spreading with increasing < is not as strong for the numerical results as

for the analytical solutions (category 3).  Similarly drier soils with larger (1 + 2D.'H + (.'H)2)
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exhibit a stronger deviation from the linear macrodispersion theory (category 4).

In general, the numerically obtained transverse Xxx' curves follow the same ups and

downs with varying F2 as the longitudinal Xzz'.   But the actual deviation from the linear theory

is much larger in the transverse direction than in the longitudinal direction.  The transverse

spreading for Ff
2=0.95 in an isotropic soil is approximately twice as large as the analytical

prediction.  This confirms similar results by Rubin (1991b) in a stochastic analysis of a

groundwater transport site with Fy
2=0.29.   Based on a nonlinear stochastic transport model,

Rubin found that the transverse spreading is approximately twice the value predicted by linear

macrodispersion theory (Dagan, 1984, 1988).    For the anisotropic soils,  the transverse,

horizontal spreading of the mean concentration plume from the Monte Carlo analysis is several

times larger than predicted from (9-8).  The underestimation of the horizontal mean plume

spreading by (9-8) is significantly greater for the anisotropic soils than for the isotropic soils

(category 3).

The variance var'(Mz) of the plume center of mass in the vertical direction is also larger

than the analytical results for X'zz  with the exception of isotropic soils.  It exhibits a very similar

sensitivity though not as pronounced, to changes in soil variability, soil moisture, and anisotropy

as the vertical spreading of the mean concentration plume (Figure 9.7a-d); a very small decrease

from the isotropic soil Ff
2=0.01 to the soils Ff

2=0.95, and an increase in var'(Mz) for both

anisotropic and isotropic soils with Ff
2 > 1.  In the wet, anisotropic soils with <=6, var(Mz) is

almost identical with the theoretical curve for X'zz.  As < decreases, the increase in var'(Mz) is

not as strong as in the theoretical X'zz.  On the other hand, a significant increase is observed in

var'(Mz) for the two dry soils relative to wet soils of similar unsaturated conductivity variance.

In the horizontal direction, the variance var'(Mx) of the plume center of mass is almost identical

with the theoretical X'xx for the isotropic soils, but several times larger than the theoretical X'xx

for all anisotropic soils.  The disagreement between the two results increases significantly for

higher Ff
2 and for dry soils (Figure 9.7e-h).

The numerical results for the spatial moments of the mean concentration plume cannot
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be strictly compared with the theoretical results for the ensemble mean concentration, because

the theoretical results do not account for the local dispersion Dd.  Unfortunately, no definite

number can be associated with Dnum,jk = Dd,jk, but initial empirical results have shown that "num,jj

= Dnum,jj/Vz is on the order of 1/10th or less of the element size in the j-th direction (see section

9.2.1).  Since Dnum,jk is constant with time, a term Xnum,jk = 2tDnum,jk must be subtracted from the

spatial moments of the mean concentration to obtain the actual Xjk.  Note that the dimensionless

X'num,jk = (2"num,jk t' )/(8fzFf
2 ).  For small Ff

2 the numerical dispersion therefore has a considerable

impact on the spatial moments of the mean concentration.  The initial findings on numerical

dispersion are re-evaluated by assessing the observed mean spreading <Mjj> around the center

of mass of each plume.  Taking into account the initial size of the plume Mjj(0)  the mean

apparent dispersivity of plumes,  "Mjj , is:
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(<Mjj'> - Mjj'(0))/(2t') is plotted in Figure 9.8.  For Ff
2=0.01 the effect of numerical dispersion

is largest relative to the effect of spatial variability.  There, the mean apparent dispersivity is

approximately constant with time and is 1.08 cm in the vertical and 0.12 cm in the horizontal.

Since the element size is square with side-length 10 cm, the initial assumption that local

dispersivity is on the order of 1 cm or less is confirmed.  In other soils,  "Mjj is significantly

larger and is attributed mainly to the effect of spatially variable velocity fields.

9.4 Temporal Analysis of Solute Transport under Uncertainty

9.4.1 Integrated Breakthrough at a Compliance Surface

For many regulatory purposes, the distribution of a contaminant in the unsaturated zone

is not as much of interest as the breakthrough of the contaminant or solute at the groundwater

table, which is at some distance Z from the source area.   Cvetkovic et al. (1992) introduced a

theoretical multidimensional model based on the Lagrangian analysis of solute transport (Dagan

et al., 1992) to predict the aerially integrated averaged breakthrough and its variance at an

arbitrary compliance surface located normal to the mean flow direction at distance Z from a

solute source of initial volume V0 [a similar approach based on the theory by Neuman (1993)

was used by Zhang and Neuman (1994c)].  Since the model requires stationarity in the velocity

moments and a mean uniform flow field, it applies directly to the unsaturated transport

experiments performed in this study.  The  simulations presented here are for two dimensions.

Thus, the initial source is an area A0 and the compliance surface CP reduces to a linear

compliance level CL.  The theoretical mean total solute flux <S(t,Z)> and the variance of the

total solute flux Fs
2(t,Z) across the CL at distance Z, at time t are obtained from the following

fundamental relationships (Dagan et al., 1992):
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(9-12)

where c0 is the initial, uniform solute concentration in the source area A0, and a is the vertical

coordinate of the location vector a.  g1(t,Z-a,a) is the travel time probability density function

(pdf) of a particle originating at a in A0 and passing through the CL at time t.  Correspondingly,

the joint two-particle travel time pdf g2(t, Z-a',a'-a") is the probability that two particles

originating at a' and a" in A0 traverse the CL at time t.  The travel time pdfs depend on the

statistics of the velocity.  Cvetkovic et al. (1992) derive a first order approximation of the first

two moments of the joint two-particle travel time pdf under the assumption that the travel path

of a particle does not deviate significantly from the mean flow direction:

where (a',x') and (a",x") are the vertical and horizontal coordinates of a' and a".  Using these

travel time moments,  Cvetkovic et al. (1992)  then hypothesize  that g1 and g2 are lognormal

pdfs,  an approximation that is strictly valid only  for lognormal velocity pdfs as Z 6 0.   They

point out, however, that lognormal pdfs for g1 and g2 are consistent with the first order

approximation (9-12) at all distances from the source, if the velocity field is lognormally

distributed,  an assumption  that holds for  the numerical simulations (chapter 8).  The form of

the lognormal  pdfs g1 and g2 can be found e.g.,  in Bras and Rodriguez-Iturbe (1985).   Using

(9-12) with the linearized velocity covariance function Cvz.vz derived in chapter 4, the double

integrals in (9-11)  can be obtained by numerical evaluation.   Since Cvz.vz varies smoothly and

is numerically evaluated with a discretization )x=0.18f (chapters 4, 8), a very accurate estimate
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of the integrals (9-12) and (9-11) is obtained by applying an extended form of Simpson's rule

first to (9-12) and subsequently to (9-11) using the same discretization as in Cvz.vz.  In the

evaluation, the vertical extent of the source area is taken into full consideration.  A conceptually

similar approach is taken by Russo (1993b) but based on a different derivation of Cvz.vz and

different integration procedures.  From (9-12a) and (9-11a) he evaluated the mean (but not the

variance) of the unsaturated breakthrough curve from a source of negligible longitudinal

extension for a three-dimensional soil with normally distributed pore-size parameter ".

As in section 9.3, the travel time variance and covariance (9-12) can be obtained

normalized with respect to 8fz and the scaled input variance F2.  But due to the nonlinear form

of the lognormal pdfs g1 and g2, the mean and variance of the solute flux (9-11) would not be

associated with the same normalization.  Since solute flux has dimensions of mass per time, the

dimensionless solute flux S' is defined as:

For non-reactive, mass-conservative solutes, the area under the breakthrough curve S'(t') must

be unity.  The numerical mean breakthrough curves (mean BTCs) can be integrated up to t'=40.

Only at Z'=5.4 breakthrough is completed in all but the most heterogeneous soil before t'=40.

Mass balance errors in the Monte Carlo mean BTCs range from +1% to +5%.  The mass-balance

in the numerically evaluated analytical BTC (9-11) is accurate to within less than 0.1%.  For

Z'=11.6, the analytical ensemble solute flux moments (9-11) and the numerical sample solute

flux moments are plotted in Figure 9.9 (as solid and dashed lines, respectively).

Numerical simulation results.  For both isotropic and anisotropic soils, the mean BTC

increases with soil heterogeneity (Figure 9.9a,b).  The increased spreading is associated with

lower and much earlier peak solute flux.   In the isotropic soils, peak solute flux decreases from

0.25 to 0.06 as the variance of f increases from 0.11 to 3.62.  In the anisotropic soils of

equivalent heterogeneity solute breakthrough is less disperse with higher peak concentrations.



Harter Dissertation - 1994 - 291

At Ff
2=0.95,  peak solute flux is 0.10  in the isotropic wet soil and 0.15 in the anisotropic (<=6)

wet soil.  At Ff
2=3.6, peak solute flux has reduced to 0.06 and 0.08, respectively.  Very similar

breakthrough is observed for the two pairs of wet and dry soils with similar Fy
2 (Figure 9.9d).

The dry soil #15 has a slightly more peaked breakthrough than #28, owing perhaps to its 17%

smaller Fy
2.  In contrast, dry soil #21 shows a more smearing than wet soil #22,  even though

their Fy
2 are identical.   Some of the difference may be attributed to the 7% mass balance

difference between #21 and #22 (#22 is the only soil with a relatively high mass balance error:

+12%).

The skewness and spread of the mean BTC is reflected in the skewness and spread of

the standard deviation of the solute flux (Figure 9.9e-h).  The peak standard deviation does not

decrease as rapidly with increasing Ff
2 as the mean BTC, suggesting an increase in the solute

flux coefficient of variation as the soils become more heterogeneous.  The shape of the standard

deviation curve (STDC) is almost bimodal with a small secondary peak after the maximum

standard deviation occurred.  The bimodality is more pronounced in the isotropic soils than in

the anisotropic soils.  Also in the isotropic soils, both peaks in the STDC occur before the mean

BTC reaches its maximum (except in the soil with Ff
2=0.11).  In the anisotropic soils, the peak

of the mean BTC falls between the two maxima of the STDC (Figure 9.9f).  As for the mean

BTC, little differences are observed in the STDC between the soils of the two wet/dry soil pairs

(Figure 9.9h).

Comparison to analytical results.  Surprisingly, perhaps, there is a good visual

agreement between the sensitivity of the theoretically determined and the numerically obtained

BTCs and STDCs to the variations of the soil hydraulic conductivity variance, change in soil

water tension, and change in anisotropy (Figure 9.9).   All theoretical BTCs are less disperse

than the numerical  results with a peak solute  flux that is generally between 15% and 30%

larger.  Larger differences occur in soils with more heterogeneous flow patterns.  Only in the

driest soil (#21) the difference exceeds 30% (approx. 70% more peak solute flux).  The

theoretical standard deviation is approximately twice as large as the numerical standard
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deviation with a tendency to a greater difference at low Ff
2 and low <.  Both numerical and

analytical STDC are much broader than the respective mean BTCs suggesting a very high

uncertainty about the prediction of the frontal breakthrough and tailing of the mean plume.  The

bimodality of the STDC is not observed in the analytical results.  The general observations made

for the BTCs and STDCs at Z`=11.6 (Figure 9.9) are also made at other depths of the CL (an

example is shown in Figure 9.10)

The smaller spreading of the mean theoretical BTC curve (when compared to the

simulation results) is consistent with the observed difference between the longitudinal spatial

moments from the analytical stochastic macrodispersion analysis and the numerically

determined spreading of the mean concentration plume, the latter of which is generally found

larger.  As mentioned above the differences can be attributed to the first order approximations

assumed in the derivation of (9-11).  Note that the illustration of the numerical and analytical

results of the least variable soil (wet, isotropic, Ff
2=0.01) are omitted.  For that soil site the

analytical results show a very sharp peak, which is approximately twice as large as the numerical

result.  However, in the latter local dispersion plays a considerable role in the overall plume

spreading since the spatial variability of the velocity field is almost negligible.

9.4.2 Local Compliance with Maximum Contamination Flux Levels

This section is concerned with the statistics of local solute breakthrough in contrast to

the integrated breakthrough investigated in the previous section.  The arrival time ta of the

compliance solute flux s0 and the solute flux peak passing time tp are used as parameters to

describe the frontal part of the breakthrough curves at each location x of the CL (recall that x

is defined for a line only).   In fact, tp is only a particular aspect of the ta function.  The choice

of these two parameters, instead of the entire local BTCs, has several advantages.  The

computational effort of storing and evaluating these data in a Monte Carlo simulation is orders

of magnitudes smaller than the statistical evaluation of the local BTCs(x).  In the numerical
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simulation, tp is defined simply as a function of location and is therefore a very small array

containing the same number of elements as a single row in the simulation domain.  The arrival

time ta is also defined as a function of horizontal location on the CL, but it is parametrized with

respect to the compliance solute flux.  ta is compiled for 19 levels of dimensionless solute flux

s/s0, varying logarithmically from 10-9 to 1.   Hence, tp is essentially a function defined for the

two-dimensional plane (x,s/s0).  Computationally, these are 19 times the amount of data stored

for tp.  In contrast, the information of a solute BTC at (x,t), recorded for every time-step, takes

as many data as there are time-steps for each grid-node on the simulated CL.  These time-steps

vary from realization to  realization depending on the  maximum Courant number  (automatic

time-stepping, chapter 5).  For the assembly of the sum and sum of square arrays of these data

variables (see above),  the individual BTCs have to be interpolated onto a regular grid of the

time-axis.

To illustrate the conceptual  link between the  arrival time function ta(x,s/s0), the peak

time function tp(x), and the BTC function s/s0(x,t), recall that all are functions in the same three-

dimensional space defined by the real variables s/s0, x, and t.   The BTC function s/s0(x,t) has

a unique solution for each (x,t)  and can be visualized as a longitudinal (parallel to the t

coordinate) trending "mountain" bulging above the (x,t) plane.   The BTC function can be

uniquely mapped by projecting the mountain onto a contour map in the (x,t) plane.  In contrast,

neither the function t(x,s/s0)  nor the function x(t,s/s0) have unique solutions.   For each x, s/s0

is obtained twice (in the front and in the tail of the BTC(x) i.e.  one can look at the mountain

from the front or the back).   And at each time, s/s0 is obtained twice along the CL (to the left

and to the right of the center of the breakthrough i.e. one can look at the mountain from the left

or the right side).  But if the three-dimensional cube spanned by ú3(s/s0,x,t) is sliced such that

t(x,s/s0) has only a single solution (in other words by deciding that one is only interested in the

shape of the mountain as it is seen either from the front or the back), either the frontal part of

the solute flux "mountain"  or the tail part of the solute flux "mountain"   can be projected onto

a contour map in the (x,s/s0) plane of the cube.  The ta(x,s/s0) function is the frontal projection
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of the solute flux  "mountain".   And tp(x) is the  contour in the (x,t) plane along which the cut

was made.

In the statistical analysis, there is a fundamental difference, however, between the mean

BTC(x,t) function and the mean ta(x,s/s0) function and their associated variances.  The former

will average the solute flux at a particular time and location, while the latter will average the

time associated with a particular location and solute flux.  From the analysis of the spatial mean

concentration it has become obvious that the concentration not only has a truncated, but also

highly skewed pdf as evidenced by the outlier problems. The meaning of averages and variances

of non-Gaussian pdfs is questionable.  In contrast, the pdf of the arrival time is not truncated (a

zero arrival time is impossible) but it has the difficult property that arrival time is not necessarily

defined for every location x and every solute flux s/s0.  At distance x certain solute fluxes s/s0

(and any higher flux) never occur.  From realization to realization, arrival time may or may not

be defined for the location x and level s/s0.  In statistical terms, the empty set {i} must be

assigned a certain probability.  While this poses difficulties in approaching the problem

theoretically, an approximate solution for the numerical sampling in a finite sampling space

(number of realizations) can be constructed by simply ignoring those samples at (x,s/s0) that are

not defined.  In the Monte Carlo simulation, a zero is added to the sum and sum of square arrays,

if no solute flux ever occurred at a certain level and location during a particular transient

transport realization.  In addition a counting file is kept to count the number of occurrences of

ta(x,s/s0), which is equal to or smaller than the total number of realizations.  The resulting sums

and sums of squares are eventually divided not by the number of realizations but by the number

of occurrences of ta(x,s/s0).

Thus not only an average time and time variance is obtained, but also a histogram of the

probability that s/s0 is exceeded at location x, which is in essence an inverse cumulative

distribution function ("iCDF" = 1-CDF) for s/s0.  Obtaining a iCDF for solute flux is extremely

important for many regulatory purposes, which deal with the likelihood that a certain

contamination level is ever exceeded after the installation of a potential contamination source
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or after completion of site remediation.  In addition, the physical meaning of "expected time of

solute flux exceedance" and the variability of the arrival time is in many instances more

significant than the "expected solute flux at time t" and its potential variability.  The probability

of arrival time of a certain solute flux level is similar to assessing the probability that a solute

particle originating from a contamination source will arrive within a certain time-frame.  Many

regulatory statutes require that a certain contamination level may not be exceeded at any given

time after installment of a potential pollution source, or that certain contamination levels are

unlikely to occur for X number of years after installment of the potential pollution source

(Neuman, 1991).  Such measures can be formulated as conditional probability measures of time

of exceedance given a solute flux (pdf(ta)|s/s0) or as conditional probability measures of solute

flux levels given a time (pdf(s/s0)|ta).

The evaluation of the local  solute breakthrough is essentially complimentary to the

spatial analysis of the concentration mean and variance.  The results are expected to be

analogous to the findings of the previous sections.  The numerical evaluation of the arrival time

of peak solute flux is  shown in Figure 9.11  for the first,  third,  and last soil categories.   All

times are normalized with respect to the mean residence time Z/Vz.   The average peak arrival

time occurs earliest for the least heterogeneous soils (isotropic, wet, Ff
2=0.01, 0.11), since the

BTC in these soils are least skewed (Figure 9.11a, see also Figure 9.9a).  Not much difference

in <tp> is seen between these two soils.  Notice that the peak arrival time for the highly

heterogeneous soil (isotropic, wet, Ff
2=3.62) is significantly later than for the other three soils.

The peak solute flux occurs later at location on the CL further away from its center (where the

center x=0  is defined as being located vertically underneath the center of the plume source).

The shape of the tp contour  is not very sensitive to soil heterogeneity indicating that the delay

in peak arrival time at a location x (with respect to the <tp>( x=0)) is the same no matter how

heterogeneous the soil.   With respect to  the shape of the <tp> line, the anisotropy ratio of the

soil is much more significant (Figure 9.11b).   At higher anisotropy, the peak time on the sides

of the CL will occur earlier than in isotropic  soils due to the  stronger horizontal  spreading of
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the solute plume.  Again the differences between dry and wet soils are insignificant if the flux

field has a similar variability (Figure 9.11c).  For all soils the variance of the peak arrival time

does not vary with horizontal location, even though the mean arrival times are larger at larger

x.  The variance increases mainly with Ff
2 and decreases only slightly with higher anisotropy

(Figures 9.11d-f).

The mean arrival <ta> map, a front view or projection into the (x,s/s0) plane of the solute

flux "mountain" generally has the expected behavior that a given solute flux level is exceeded

earlier towards the center of the CL and later as |x| increases.  The higher the solute flux level,

the later it will on average be exceeded (Figure 9.12).  Note that the solute flux is plotted on a

logarithmic scale.  Except for the very highest solute flux levels (the only ones distinguishable

in the BTCs of Figure 9.9, where solute flux is plotted on an arithmetic scale), the mean time of

first exceedance of a solute flux level is significantly earlier than 1.  The mean arrival time

(relative to the average residence time Z/Vz) for the lowest solute flux level (s/s0=10-9) is

between 0.45 and 0.55 for all investigated soils.  Only in isotropic soils with Ff
2<1.0 the mean

arrival time for any solute flux level never drops below 0.5.  The mean arrival times increase in

an almost linear fashion radially away from the (x=0,s/s0=10-9) point.  For higher variances and

larger anisotropies the shape of the "mountain" becomes broader (but not flatter owing to the log

scale on the vertical axis).  With increasing anisotropy and increasing Ff
2, the earliest arrival

time for the low solute flux levels decreases everywhere on the CL, although <ta> shows very

little sensitivity in the anisotropic soils at x=0, once Ff
2$0.95.

The highest solute flux levels are reached in the least variable soils, while the maps for

the most highly variable soils (Figure 9.12e,f) prove that outliers are observed not only on the

slow travel time end (see section 9.3), but also on the fast travel time end of time scales.  In a

reversion of the general trend that higher solute fluxes occur later, the highest solute fluxes in

the three soils with  Ff
2 > 0.9 occur on average earlier than some lower flux levels.  Since these

high flux levels are associated with low likelihoods (see below), they can only be attained if the

solute source is in a preferential flow area, which displaces the plume relatively fast past the CL.
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Due to the varying number of samples underlying the sample mean and sample variance, the

estimation errors of the sample mean and sample variance of ta may vary significantly and are

expected to be high near the margin of the map, where the likelihood of exceedance is least.  The

more variable the soil, the more erratic are the contour lines of both the <ta> and the CVta maps

(Figure 9.12 and 9.13).

The coefficient of variation CVta of solute flux exceedance time shows that the highest

uncertainties are about the arrival times of the lowest solute flux levels at the center of the CL

(Figure 9.13).  The only exception are the two, mildly heterogeneous, isotropic soils (Figure

9.13a-b), where the CVta increases first and then decreases again, with larger distance form the

center of the CL.  Clearly, the CVta rises with soil variability.  For the isotropic, wet soil with

Ff
2=0.11, the CVta varies from 0.3 to 0.5 (Figure 9.13a).   In the anisotropic soils with Fy

2=3.2,

the CVta varies from 0.5 near the edges to 1.1 in the center of the CL (Figures 9.13e-f).

Anisotropy decreases the uncertainty about the mean arrival time considerably for soils of

comparable variability in Ff
2.  The observed decrease of uncertainty towards the edges of the

"mountain" must be seen in connection with the decreasing likelihood of such solute fluxes ever

to be exceeded.  Figure 9.14 gives the sample probability that a solute flux level is ever

exceeded.  Each curve presents the iCDF of solute flux at a particular location x of the left half

of the CL.  Like the mean <ta>, the iCDF is symmetric to the center of the CL.  The rightmost

curves represent the highest likelihood for the highest solute flux levels and are associated with

x=0.  Each curve further to the left in the graphs of Figure 9.14 is for an increasing distance x

from the center.  The interval between locations x of neighboring iCDF plots is indicated as )x.

The iCDF is steepest for the soils of lowest variability indicating the least variance in solute

flux.  At each soil, the steepest iCDF is observed for the center location, which has the highest

mean (rightmost curve) and the least variance.  The further away from the center of the CL, the

lower the mean solute flux and the smaller the slope of the iCDF, hence the larger the variance.

Note that these plots are on a logarithmic scale for s/s0.  For a relatively homogeneous soil

(Figure 9.14a), the iCDF is relatively symmetric with respect to the geometric mean s/s0, and
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solute flux is lognormally distributed.  At higher variances the top part of the slope of the iCDF

decreases with a longer tail towards lower solute flux levels, indicating that on a logarithmic

scale for s/s0, the probability distribution of s/s0 (derivative of the iCDF) is significantly skewed.

Skewness also increases with distance from the center.

9.5  Summary and Conclusions

In this chapter solute transport from local sources of small lateral extent in unsaturated

soils with steady-state mean  uniform flow conditions is analyzed.   A number of numerical

Monte Carlo transport simulations were implemented for a variety of soil conditions.  The

sensitivity of solute transport and the uncertainty of its prediction is investigated for soils of

varying  variability in  Ff
2 and  Fa

2, for  soils with  anisotropy ratios  ranging  from  <=1  to <=6,

for soils of different mean soil water tension H,  and for soils with correlated and uncorrelated

f and a parameters.  Several different aspects of solute transport have been addressed:  The

dynamics of the mean concentration plume and of the concentration variance, the spatial inertia

moments of the mean concentration plume,  the mean inertia moments of individual plumes

around their center of mass, and the variability of the center of mass of individual plumes.  The

spatial description of solute transport was contrasted with the temporal description of solute

transport i.e., the solute breakthrough at a compliance surface or compliance level (CL) some

distance away from the solute source.  The mean and variance of the total mass flux across the

CL is determined and an alternative interpretation of uncertainty with regard to the arrival time

of a solute at a compliance surface is offered.  Instead of predicting the uncertainty about the

solute flux level at a given time, the uncertainty about the time of first exceedance of a given

solute flux level is stochastically determined.

In agreement with theoretical predictions by Dagan (1986), the prediction of a solute

plume of small initial extension (relative to the correlation scale of soil heterogeneity) is

associated with large uncertainties.  For highly heterogeneous soils (Ff
2>2) the mean
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concentration plume  is of dimensions  that have little to  do with the actual size of the plume.

For soils with an unsaturated hydraulic conductivity variance Fy
2 = 3.2, the variability in the

vertical and horizontal displacement of the plume center at t'=10 accounts for 71% and 55%,

respectively, of the spreading observed in the mean concentration.  As a consequence, the

predicted average peak concentration is almost an order of magnitude lower.   At Ff
2=1 and

t'=10, the vertical and horizontal variability of the plume center displacement still accounts for

61% to 68% of  the longitudinal and for 47% to 42%  of the lateral mean concentration

spreading, with the former limit being for isotropic soils and the latter for anisotropic soils of

aspect ratio 6. Large residual mean concentration at less than 20 correlation scales from the

source for t'=40 is an important indication that the variability of the displacement of the plume

center accounts for significant amounts of the prediction uncertainty even at travel distances

larger than 40 correlation scales.   This conclusion is confirmed by the significant variability of

the solute mass  flux across the bottom  boundary (23 correlation scales from the source) at

t'=40.

The numerical results  are contrasted with linear theoretical models of stochastic

transport in porous media.  To describe the spatial moments of the solute plume, a linear

macrodispersion model is developed for the two-dimensional unsaturated transport under

investigation based on the analytical flow model developed in chapter 4 (see also Yeh et al.,

1985a,b) and on the linear macrodispersion theory by Dagan (1984, 1988).  For the solute

breakthrough at a compliance surface the first order perturbation analysis of unsaturated flow

is applied to the travel time analysis developed by Dagan et al. (1992) and Cvetkovic et al.

(1992).  Analytical predictions of the mean solute breakthrough curve and the variance of total

solute flux at the unsaturated CL are obtained as a function of  time.

The linear macrodispersion theory predicts that for soils with identical 8f=8a and ', the

second spatial moments are directly proportional to the theoretical unsaturated hydraulic

conductivity variance Fy
2, since the second spatial moment and Fy

2 both grow with F = Ff
2

(1+2DH' + H'2), where H' = .'H is a dimensionless measure of the mean soil water tension.
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From these theoretical considerations it is expected that a direct proportionality between the

spatial moments of the concentration and the unsaturated hydraulic conductivity does not exist,

when either the aspect ratio of the correlation scales or the geometric mean of " (=') changes.

It does also not hold, if the correlation functions for f and a are not identical.  Together with the

findings in chapter 8 (8y does not decrease significantly with respect to 8f as the soil water

tension increases) both the numerical and analytical results presented here contradict the

hypothesis by Russo and Dagan (1991) that 8yzFy
2 . 8fzFf

2 independent of the mean soil water

tension (see also chapter 6).

The numerical  simulations have shown that  the longitudinal spatial  moments of the

mean concentration in anisotropic soils with moderate to high variability are indeed more or less

proportional to the unsaturated hydraulic conductivity.  In isotropic soils, however, no direct

proportionality is found between Xzz and Fy
2.  Only the variance of the vertical (longitudinal)

location of the center of plume position is in all soils found to be directly proportional to F and

hence to Fy
2.  Otherwise the accuracy of the linear macrodispersion theory is limited.  The actual

mean concentration spreading is found to be not only larger than predicted by the theory,

particularly  in anisotropic soils,  but also in  contrast with the  very concept of

"macrodispersion".  The latter is based on the pseudo-Fickian advection-dispersion model, i.e.,

a Gaussian spatial concentration distribution.  The numerical simulations, however, show that

the spatial distribution of the average concentration is non-symmetric and highly skewed along

the longitudinal axis due to the lognormally distributed vertical velocity component.  For the

anisotropic soils of moderate to high variability and aspect ratio 6, the actual longitudinal

spreading is 60% to 80% larger than predicted.

Numerically computed transverse mean plume spreading and displacement variance of

the plume centers  also varies nonlinearly with Fy
2.   Transverse spreading of the mean plume

far exceeds the  predictions of the linear macrodispersion theory.   Like for longitudinal

spreading, this study finds that the difference between theory and simulation of transverse

spreading increases as the anisotropy ratio becomes larger.  In a dry soil with aspect ratio 6 and
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Fy
2=3.2, the horizontal spreading of the actual (numerical) mean plume is almost one order of

magnitude larger  than predicted by the theory,  and most of the  spreading is due to variability

in the horizontal plume center displacement.  Except for the case of the least variable soil

examples, the larger actual mean plume spreading cannot be explained by the effect of local

dispersion, which has been neglected in the macrodispersion model.  Rather it is the well-known

limitation of the macrodispersion model itself, which explains the difference.  The main

assumption of the  linear macrodispersion model is that a particle deviates only insignificantly

from the mean travel path, which is obviously erroneous for highly heterogeneous soils (see

Figure 9.2c).

Although not specifically addressed in this study, the results do not confirm the findings

of Bellin et al. (1992) who concluded from their numerical studies of saturated flow that the

erroneous effects of linearized  flow and linearized transport may cancel each other.  However,

their study was limited to the isotropic case with Fy
2=Ff

2 # 1.6.  For those conditions the results

in this study also  indicate a  good match  between the theoretical model and the numerical

results.  Only under anisotropic conditions large differences between theoretical and numerical

solutions are found, even in mildly heterogeneous soils.

The findings with respect to the underestimation of horizontal spreading are consistent

with Rubin (1990), Neuman and Zhang (1990), Tompson et al. (1990), and Zhang and Neuman

(1994c).  However, the same authors come to the conclusion that the linear macrodispersion

model will overpredict longitudinal spreading of the mean concentration.   Again, this is in

contrast to the results here, where the macrodispersion model generally underestimates the

longitudinal macrodispersion.  The differences are attributed to the different anisotropy structure

modeled here.  The above mentioned papers model groundwater transport in isotropic and

anisotropic porous media, where the mean flow is generally assumed to be parallel to the

direction of strongest correlation.  In contrast, mean flow in this study is normal to the direction

of strongest correlation.   Together with the results of Bellin et al. (1992) this may be an

indication that the linear  macrodispersion model  best predicts transport in isotropic porous
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media, underpredicts longitudinal spreading for 8l/8t<1  and overpredicts longitudinal spreading

for 8l/8t > 1, where  8l/8t is the ratio of the correlation scales in longitudinal and transverse

direction of mean flow.

Similar differences occur in the estimation of the spreading of the mean breakthrough

curve across the CL.  The theoretical model by Cvetkovic et al. (1992) based on lognormal two-

particle joint travel time pdfs with first order parameters, underestimates the spreading of the

mean breakthrough curve observed in the numerical simulation.   It is generally very accurate

in predicting the front end of the mean BTC, but overestimates the peak concentration by 15%

to 30% and in highly heterogeneous soils up to 70%.  All numerically obtained mean

breakthrough curves exhibit considerably more tailing than predicted by the theory.  The theory

overpredicts the variance of the solute flux by a factor 2 resulting in conservative estimates of

the uncertainty (measured in terms of the coefficient of variation) about the solute flux at time

t.  Overall I conclude that the linear macrodispersion model as well as the travel time model

adopted here for unsaturated flow conditions will give reasonable estimates of the mean

concentration in space and mean solute flux across CL, if the purpose is to obtain rough

estimates of the mean concentration plume and the mean BTC.  For predicting uncertainties

associated with extreme events (e.g., early arrival) or associated with very small concentrations,

the theoretical models are insufficient.

The statistical analysis of the first time or arrival ta of exceedance of a given solute flux

s/s0 at a location x of the CL  has yielded additional  insights into the  stochastic behavior of

solute transport.  Not only is it a very attractive and efficient alternative to the numerical Monte

Carlo evaluation of the local BTC(x).  It also offers an important practical tool to predict the

mean and uncertainty about the time when a given compliance level will be exceeded, an

approach that has in the past neither been addressed theoretically nor numerically.  The analysis

of travel time variability that is suggested here also yields probability distribution functions for

the likelihood that  a given solute flux level will ever be  exceeded at  location x of the CL.

However, it does not indicate for how long the compliance level is exceeded or what the total
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mass flux will be at x.   The empirical sample  probability of exceedance  of solute flux  levels

has a form best described as a slightly skewed quasi-lognormal Gaussian CDF.  The average

<ta(s/s0)>, the time of first exceedance of s/s0, shows that the same solute flux levels are reached

later as the distance from the center of the CL increases.  The least uncertainty is associated with

predicting the arrival time of the highest solute flux levels at a location x, since high solute flux

levels can only be attained, if the travel path is fairly direct and undistorted and hence, the travel

time is relatively short (physical constriction).  This must not be confused with the likelihood

that such  high solute flux levels occur.   Indeed the high flux  levels are the  least likely.  A

weakness of the numerical approach to arrival time analysis is that the number of samples

decreases with larger x and larger s/s0.   The statistical sample moments of ta and tp have

therefore increasing sample error.  Note that this type of analysis is different from the numerical

or Lagrangian travel time analysis of particles such as e.g. in Smith and Schwartz (1981a) and

Cvetkovic et al. (1992).

In light of the high variability of the plume center displacement, the strong skewness of

the mean concentration plume, the non-Gaussian distribution of the concentration RFV c(x,t),

and the very long travel times required for ergodicity to occur, the fundamental problem

highlighted in this chapter is the high uncertainty of predicting solute transport with any

unconditional stochastic model for unsaturated transport, if the soil flux variability becomes

large (Fy
2$1).  The differences between the stochastically more accurate numerical simulations

and the predictions of the macrodispersion and travel time theories may seem minor compared

to the differences between the mean predictions and actual values of concentrations and solute

fluxes.  The conditional simulation approach introduced in the next chapter offers an alternative

to the unconditional stochastic models applied in this chapter.  But the detailed information

obtained in this chapter about the variability of solute transport from small sources - under very

idealized conditions - is in agreement with the empirical results reported in numerous field

studies:  It is generally difficult to model or predict the actual transport behavior of a solute in

a heterogeneous soil to a high degree of accuracy.
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Table 9.1
Input parameters for the various hypothetical soil sites used in the unconditional transport

analysis:  Ff
2: variance of f=logK s (log: natural logarithm), Fa

2: variance of a = log", Daf:

correlation coefficient between f and a, ': geometric mean of ", )x: horizontal discretization of

finite elements, )z: vertical discretization of finite elements, 8fx: horizontal correlation length of

f, 8fz: vertical correlation length of f.

name Ff
2 Fa

2 D ' H )x 8x cut

#3 1.0 0.01 0 0.01 -150 10 50 5

#2 0.01 10-4 2

#4 1 5

#8 0.12 5

#9 4.0 0.04 10

#12 1 30 300 5

#15 -1000 30 300 5

#21 1 -3000 30 300 10

#22 4.0 0.04 30 300 10

#28 2.25 0.04 30 300 5

#29 30 300 5

#31 15 150 5
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Dimensionless distance z/8fz between the location of the minimum CVc and the
location of the maximum <c> as a function of dimensionless time t'=tVz/8fz.  The
minimum CVc is always located below the maximum <c> i.e., is travelling at a faster
rate.  Dimensionless times in parentheses refer to soil site #28.

soil type Fy
2 < t' = 5 (4) t' = 10 (8) t' = 20 (16)

#2 .01 1 0.0 0.0 0.0

#8 .10 1 0.1 0.0 0.0

#3 .85 1 0.8 0.6 0.4

#9 3.4 1 2.6 5.2 14.8

#31 .75 3 0.8 1.0 3.2

#12 .53 6 0.4 0.4 1.2

#29 .79 6 0.4 0.6 1.8

#15 1.5 6 0.8 1.6 1.4

#28 1.8 6 0.8 1.8 4.8

#22 3.2 6 2.6 9.6 5.2

#21 3.2 6 4.2 8.6 4.8

Table 9.2
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Figure 9.3: Sample mean concentration after 300 realizations (a-d, left column) and after

only 100 realizations (e-h, right column) of transport in a strongly

heterogeneous flow field (soil site #21, Fy
2 = 3.2).
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Figure 9.4: Minimum concentration coefficient of variation at or near the center of the

mean plume.  Except where indicated, f and a are not correlated (Dfa = 0).
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Figure 9.6: Vertical (a-d, left column) and horizontal (e-h, right column) mean

concentration second spatial moment.  Solid lines are analytical results, while

dashed lines are from the Monte Carlo analysis.  Labels are explained in Figure

9.4 and Table 9.1 (also see section 9.2.3).
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Figure 9.7: Vertical (a-d, left column) and horizontal (e-h, right column) variance of

concentration center of mass.  Solid lines are analytical results, while dashed

lines are from the Monte Carlo analysis.  Labels are explained in Figure 9.4 and

Table 9.1 (also see section 9.2.3).
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Figure 9.9: Mean solute flux (a-d; left column) and standard deviation of the solute flux (e-

h; right column) at a distance z’=11.6 from the center of the source.  Solid lines

are the analytical model (eqn. 9-11), dashed lines are from the Monte Carlo

analysis.  For labeling refer to Figure 9.4.
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Figure 9.11: Mean (a-c; left column) and standard deviation (d-f; right column) of the arrival

time t’ of peak concentration at the compliance surface.  All results are from

numerical analysis.  Labeling identical to previous Figures.



Harter Dissertation - 1994 - 317

Figure 9.12: Mean arrival time <t’> of first exceedance of the compliance concentration.

The arrival time is contoured as a function of compliance concentration (y-axis)

and as a function of horizontal location (x-axis).   The time is normalized with

respect to the mean travel time to the CP surface.
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Figure 9.13: Coefficient of variation of arrival time CVtcp of first exceedance of the

compliance concentration.  The CV of arrival time is contoured as a function

of compliance concentration (y-axis) and as a function of horizontal location (x-

axis).
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Fig

ure 9.14: Probability of exceedance of solute flux s/s at different horizontal distances x

relative to the location of the source.  The curve with the highest probability is

at x = 0.  Subsequent curves are at distance x that are )x apart from the

neighboring curve.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57

