Inexpensive restoration techniques for rapidly increasing wood cover for salmonids

Jennifer Carah, Ecologist, The Nature Conservancy, jcarah@tnc.org
Dave Wright, Campbell Timberland Management
Christopher Blencowe, Blencowe Watershed Management
Lisa Bolton, Trout Unlimited

Wood for Salmon

- Why wood?
- What approach are we using?
- What have we done so far?
- What do you need for a successful project?
- Design criteria
- Funding, permitting considerations
- What are the limitations of our method?
- What are others ways to add wood?

What do salmon need?

- Cold, clean water (quality & quantity)*
- Connectivity
- Spawning gravels*
- Deep pools*
- Cover from predators at all life stages*
- Healthy riparian forests/shade
- Refuge from high winter flows*
- Healthy estuaries*
- Food*
- Healthy oceans

Phase 1: 1,000,000+ years of wood loading

<u>Phase 2</u>: Early Logging (1860s – 1920s): Instream and streamside tree and wood clearing

<u>Phase 3:</u> Post WW-II Logging (1940s – 1970s) Excessive wood loading

Phase 4: Stream Clearing (1970-80s)

<u>Phase 5</u>: Waiting for riparian corridors to mature (Present)

Hydraulics/Habitat Formation

Cover

Food

Wood and Salmon

- 1 wood high priority coho recovery action
- 80% of NMFS CCC ESU Coho Core Areas have poor wood stocking

Restoration Strategies

- Protect and restore riparian forests and processes
 - Riparian buffers
 - Selective management

Problem?

Sedell et al. 1988

Public Draft Recovery Plan for the ESU of CCC Coho Salmon (NMFS 2010)

Restoration Strategies

2. Accelerated recruitment of wood as a stop-gap measure

Accelerated Recruitment

- Wood
 augmentation is not
 a new idea
- Our strategy:
 - † pace and scale
 - rapid, efficient
 accelerated
 recruitment of wood
 as a stop-gap
 measure
 - natural wood recruitment is the goal

Accelerated Recruitment

- Gualala Redwoods, Inc./ Gualala River Watershed Council
 - treated 14 streams
 - 781 individual wood pieces
 - total volume 93,359 ft³

Where we are working

What have we done?

		Watershed			
		(square	Av. bankfull	Miles	Pieces
Project	Project Partners	miles)	width (ft)	tre ate d	placed
Clark Fork Ten Mile	Campbell/Hawthorne	34	70	1	31
	Campbell/Hawthorne/Trout				
Kass Creek (Noyo)	Unlimited	2.5	13	2.6	140
	Campbell/Hawthorne/Trout				
North Fork Ten Mile	Unlimited	39	53	10	392
	Campbell/Hawthorne/Trout				
South Fork Ten Mile	Unlimited	39	49	9.4	309
	Nature Conservancy/		42 (lower),		
Inman Creek (Garcia)	Conservation Fund	9	38 (upper)	4	188
	Nature Conservancy/				
Signal (Garcia)	Conservation Fund	6	31	3	122
	Nature Conservancy/		52 (upper),		
North Fork Garcia	Conservation Fund	16	50(lower)	1.5	117
Little North Fork Big River	Conservation Fund	13	32	1.7	81
	Redwood Forest Foundation/				
NFUsal	Campbell/Trout Unlimited	16	25	2	94
	WegerRanch/State Parks/		41 (upper),		
South Fork Big River	Trout Unlimite d	38	30 (lower)	2.1	160
			25 (upper),		
Big Salmon Creek	Conservation Fund	13	16 (lower)	6.4	323
Totals				43.7	1957

- Dynamic, process-based approach
 - unanchored
 - engineered by nature

Inman Creek/TNC-TCF - October 2009

1. Use rubber tired skidder and/or backhoe to place nearby salvaged material or cut trees

Inman Creek/TNC-TCF - October 2009

South Fork Ten Mile//CTM - July 2008

2. Use rubber tired skidder to wedge cut trees

Inman Creek/TNC-TCF - October 2009

South Fork Ten Mile/CTM - July 2008

3. Opportunistically free falling near-stream trees

South Fork Ten Mile/CTM - July 2008

NF Ten Mile, CTM 2011

Monitoring

- Pre- and post-treatment surveys
 - habitat typing
 - wood density and distribution
 - photopoints
- Tagging/mapping placed wood

August 2009 – before treatment

June 2010 – after first winter

October 2009 – after treatment

August 2011 - after second winter

Inman Creek, Garcia River Forest, Mendocino County, CA

Longitudinal Profile of Lower 1400' Project Reach in Kass Creek (Noyo River) (2010-2012)

Longitudinal Profile of Lower 1400' Project Reach in Kass Creek (Noyo River) (2010-2012)

Longitudinal Profile of Lower 1400' Project Reach in Kass Creek (Noyo River) (2010-2012)

Summary of Percent Change in Key Habitat Variables in Six Mendocino County Streams

							Pool		
	% Pools by Total Length	Total LWD (6'-19')	Total LWD (≥20')	Residual Pool Depths	# of Pools 3.0' - 3.9'	# of Pools ≥ 4.0'	Shelter Rating	% shelter is LW	% shelter is SW
Signal Creek	38.0%	46.0%	113.0%	-4.0%	11.0%	33.0%	5.0%	81.0%	47.0%
SF Big River (Wegner Reach)	25.0%	22.0%	9800.0%	-11.0%	-30.0%	-33.0%	60.0%	1300.0%	2100.0%
LNF Big River	6.0%	10.0%	97.0%	4.0%	14.0%	50.0%	37.0%	12.0%	18.0%
Kass Creek (lower 1400 ft)	24.0%	13.0%	62.0%	0.0%	-100.0%	0.0%	24.0%	49.0%	24.0%
Lower Inman Creek	24.0%	123.0%	327.0%	3.0%	0.0%	100.0%	86.0%	277.0%	587.0%
NF Garcia	10.0%	-7.0%	152.0%	-9.0%	233.0%	0.0%	36.0%	78.0%	76.0%
Mean	21.2%	34.5%	1758.5%	-2.8%	21.3%	25.0%	41.3%	299.5%	475.3%
SD	11.6%	46.7%	3940.6%	6.2%	112.0%	46.8%	28.3%	498.7%	825.6%

Retention rates

	Project	Retention	
Project	Age	Rate	
SF Ten Mile	6	82%	
Inman Creek	4	73%	
Signal Creek	2	97%	
North Fork Garcia	2	100%	

What do you need for a successful project?

- A skilled team
 - hydrology/geomorphology
 - fisheries
 - skilled heavy equipment operators/fallers
- Good understanding of your stream
 - limiting factors
 - existing conditions
- \$, wood, permits
- Monitoring

Design criteria

Which location to target? Which trees to use?

- canopy cover
- wood availability
- wood size (DBH and length)
- layout
- equipment access
- channel morphology/local conditions
- safety

How much wood to add?

Permitting Options

- 'Choose your own adventure'
- FisheriesRestoration GrantProgram
- Timber Harvesting Plan (under ASP rules, maybe)

Funding Options

- DFW Fisheries Restoration Grant Program
- DFW Steelhead Fishing Report and Restoration Card
- NOAA Community Restoration Programs
- Resource Conservation Districts/NRCS
- Prop 84 Integrated Regional Water Management (IRWM) funds
- Water Board 319h
- DWR Urban Streams Restoration Program
- Fish America Foundation
- NGO partnerships
- THPs??

Findings

- Pool habitat increases
- Shelter and structure values increase
- Wood volume increases
- Large wood is retained in the channel
- Residual Pool Depths appear to decrease, which may elevate streambeds over time
- Accelerated recruitment is more economical than traditional anchoring (~\$1000 vs ~\$250 log)
- However, it is only one tool in the restorationist's tool box

Should everyone do this?

Who should consider doing this?

- •Landowners with large holdings, lots of trees and little risk to infrastructure
- These ownerships are key to recovering coho
- •The 7 largest landowners own 73% of the properties in Mendocino County's CCC ESU Coho Core Areas

Engineered Log Jams (ELJs)

Traditional anchored structure

Acknowledgments

- The Nature Conservancy, The Conservation Fund, Campbell Timberland Management, Hawthorne Timber Company, Trout Unlimited, Weger Associates, California State Parks
- TNC/NOAA Community Restoration Grants Program, DFW Fisheries Restoration Grant Program, Fish America Foundation, Felton Family Foundation
- Ken Smith, Allison Chambers

Permitting Resources

- Wood for Salmon Working Group Permitting
 Guidance Document*:
 http://conserveonline.org/workspaces/woodforsalmon
 on
- Fisheries Restoration Grant Program:
 http://www.dfg.ca.gov/fish/Administration/Grants/F
 RGP/
- Coho HELP Act link: http://www.dfg.ca.gov/fish/Resources/Coho/HELP/

^{*}link will no longer be live after 6/30/2013. Email me after that at jcarah@tnc.org for documents and new web address.