Assessment of Vineyard Water Use in the Navarro River Watershed

Glenn McGourty, D. Lewis, J. Harper,

R. Elkins, J. Metz, P. Papper, J. Nosera,

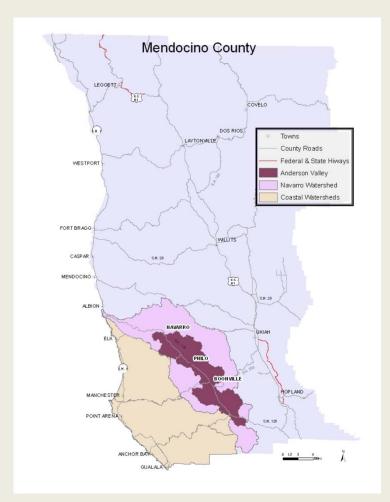
R. Sanford, L. Schwankl, and T. Prichard

Mendocino County Board of Supervisors

July 15,2013

Financial Support For This Study

Protecting nature. Preserving life.™

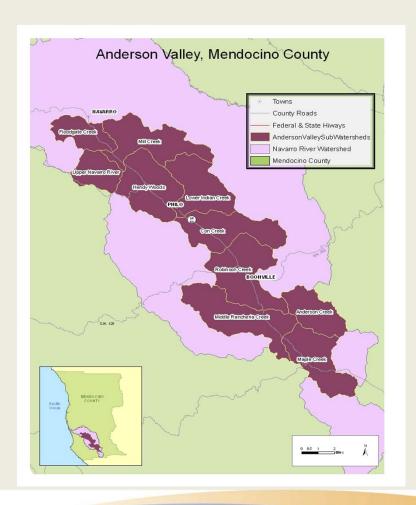

Why Conduct This Study?

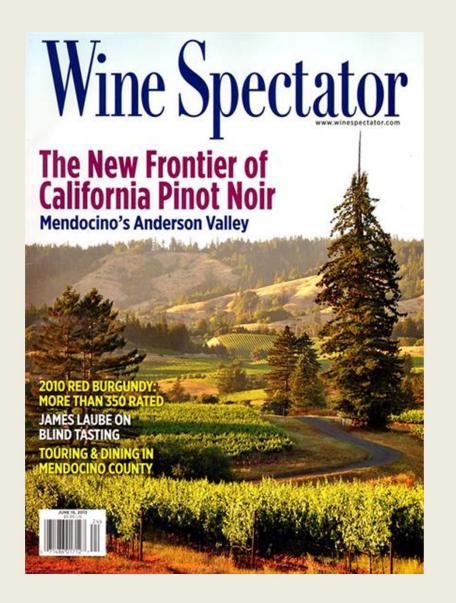
- Local interest in continued quality land/water stewardship & sustainability
- Planning for land use
- State & Federal water quality regulations
 - Assembly Bill 2121
 - Water Code section 1259.4
 - NMFS Coho salmon
 Critical Habitat Designation
 (70 FR 52488)

Navarro River Watershed, Mendocino County

- Southern Mendocino County, California
- Drains Coast Range mountains to the Pacific Ocean
- Navarro River Watershed
 - 201,200 acres
 - Largest coastal watershed in Mendocino County

The Navarro Watershed is a Beautiful Place





Anderson Valley, Mendocino County

- Subset of larger Navarro River watershed
 - 10 Planning Watersheds
- Agriculture
 - Historically timber & sheep, cattle grazing
 - Apples, wine grapes
- 67,840 acres (Total)
- ~3,100 acres of irrigated agriculture

Project Goals For Study Area

- Improve the understanding of agricultural water needs and uses, especially volume and timing of irrigation applications
- Understand the basic hydrology of the watershed
- Evaluate the efficiency of the irrigation practices used by growers
- Estimate potential land area available for agricultural expansion using land form features
- Inform for long term resource planning

Tools Used in the Study

- GIS for determining vineyard area, pond location, soil types and water holding capacities
- Review of Historical and Proprietal Data:
 - --Stream gauge flow data
 - --Water rights for ponds and irrigation
 - --Irrigated agriculture and crop acreage
 - --ET data
- Grower Surveys, conducted 2009
- Irrigation Audits
- Canopy shade measurements to determine Kc

Methods | Data Compilation

Public Data

- USGS Navarro River gauge (near Hendy Woods State Park)
- SWRCB Anderson Valley water rights database
- Mendocino County Agricultural Department Crop Reports

Private Data

- Roederer Adcon evapotranspiration data
- Anderson Valley Winegrowers **Association Acreage Inventory**

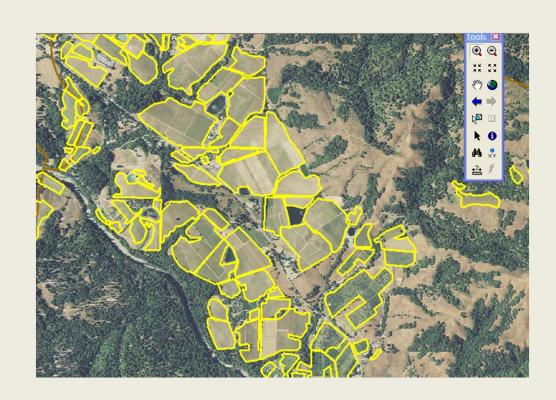
Spatial Data (GIS)

- USDA National Agricultural Imagery Program NAIP Aerial *Imagery*
- USGS National Elevation Dataset (NED) – topography
- CalWater 2.2.1 Watershed boundaries
- NRCS Soils Series

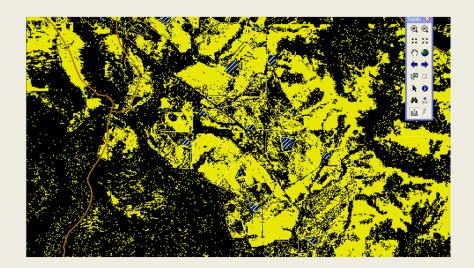
Methods | Grower Surveys

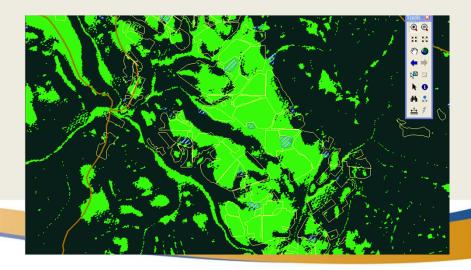
- Adapted surveys from prior effort focused on the Russian River
- Sent to a large segment of the Anderson Valley winegrape grower's community
- Designed to document past and present onfarm water use patterns
- Inquired about grower awareness of and participation in existing conservation efforts and their motivations for participation

Methods | Field Measurements-System Distribution Uniformity


Methods | Field Measurements (Kc)

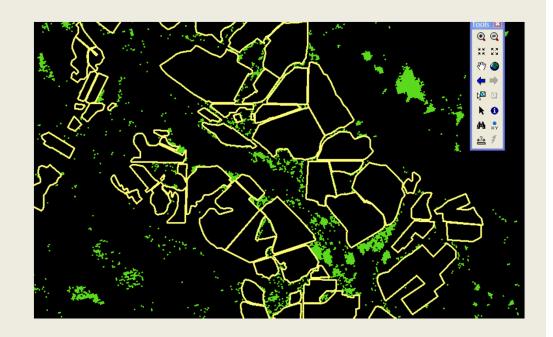
- Water use and crop coefficients (Kc) are highly correlated
- Used Paso Panel technique (Battany 2012) to directly measure canopy shaded area on representative sites and trellis designs in the **Anderson Valley**
- N=6, 40 obs./site
- Kc calculated = 0.6


Methods | Existing vineyard acreage

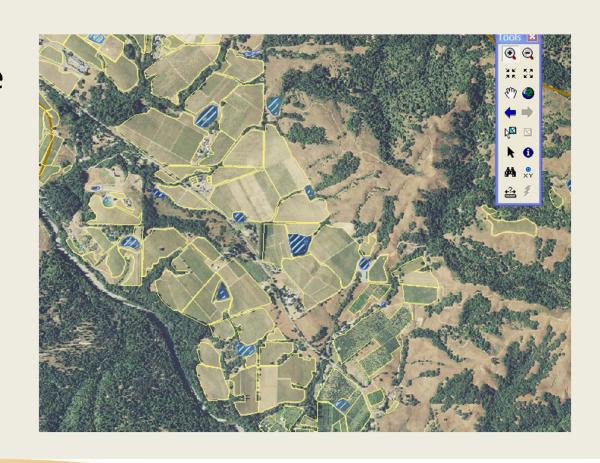

- Digitized field boundaries in a GIS using NAIP 2009 aerial imagery
- NAIP = National **Agricultural Imagery Program USDA**
- 0.5 acre minimum mapping unit

Methods | Potential Future Irrigated Agricultural Land


- 2009 NAIP imagery used to derive a grid-based landcover classification
 - Forest
 - Non-forest
- National Elevation Data (NED) used to derive slope surfaces
 - Reclassified into <10% & <20%


Methods | Potential Future Irrigated Agricultural Land

- Magnesium affected soils of the Yorkville-Squaw Rock-Witherall Complex were excluded from final analysis
- Primarily at eastern headwaters of Navarro River


Methods | Potential Future Intensive **Agricultural Land**

- Exclude existing vineyard & reservoirs from analysis
- Constrained to viticulturally active portion of Anderson Valley

Methods | Existing Water Rights

- Focus on Surface Diversions & Ponds
- Summarized
 existing water
 rights for the
 Anderson Valley
 (Public SWRCB
 Database)

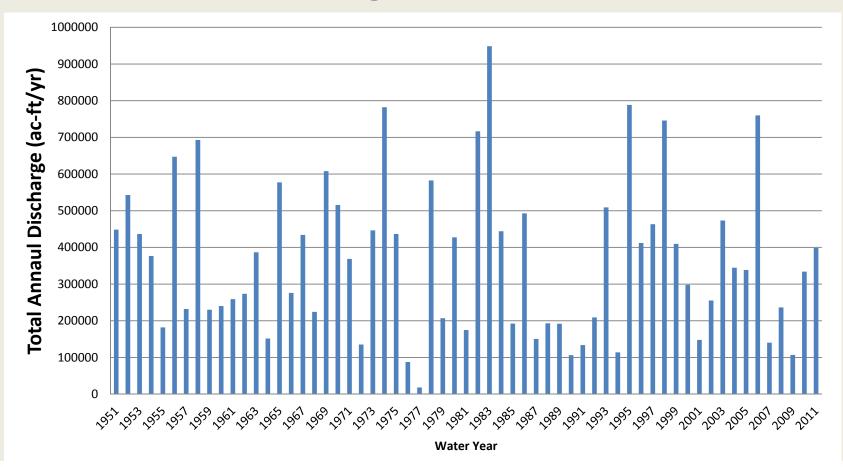
Methods | Irrigation Demand

 Irrigation demand was calculated for the majority of soil series within vineyards

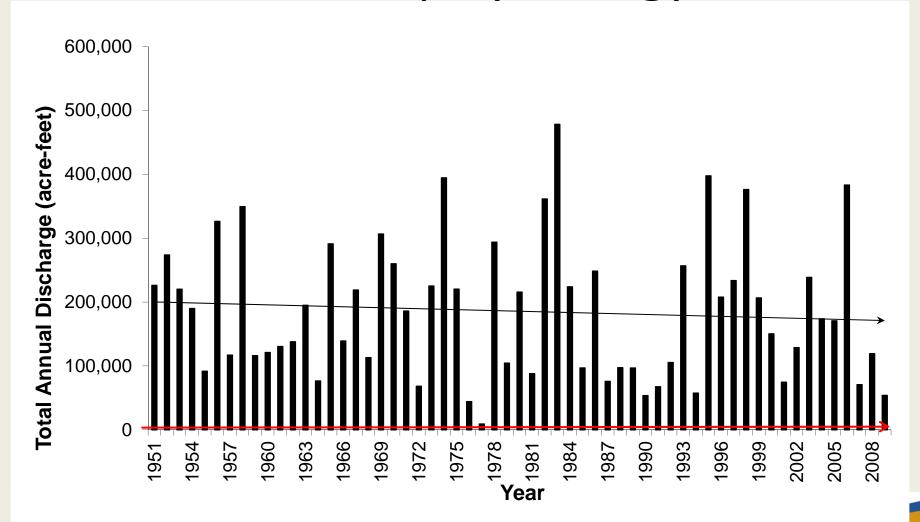
Where:

ID = irrigation demand

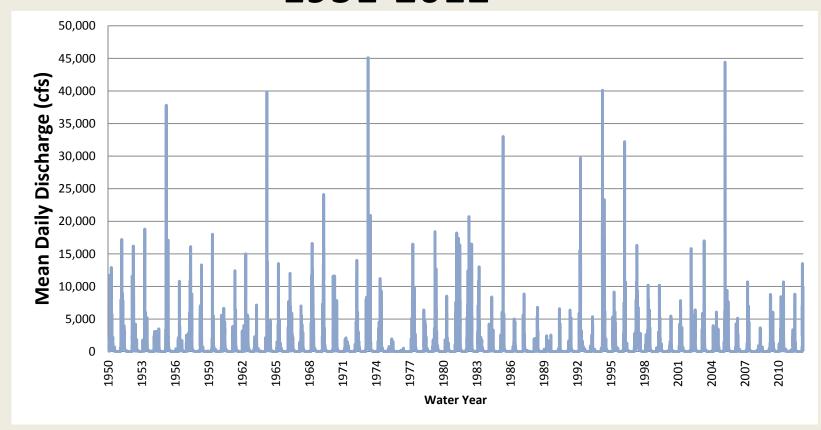
ET= evapotranspiration


Kc = crop coefficient

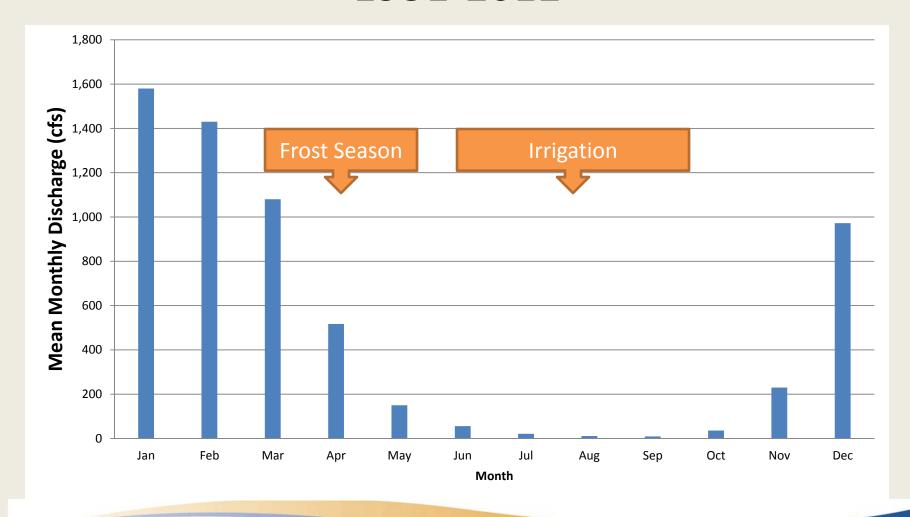
AWC= soil available water capacity



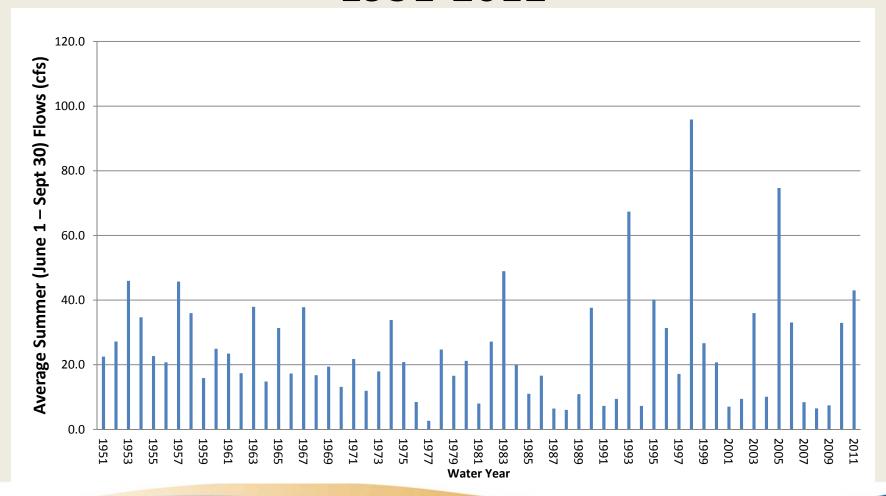
ID =ET *Kc-AWC


Navarro River Total Annual Discharge 1951-2012

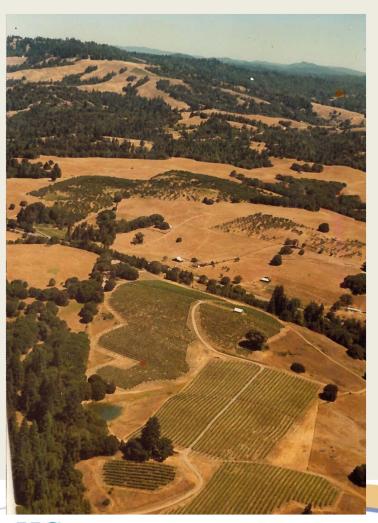
Results | Hydrology

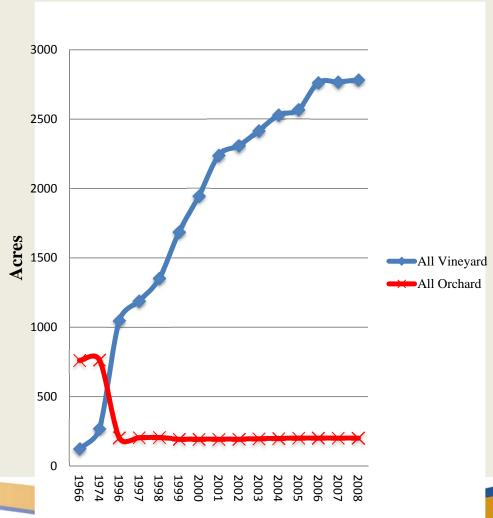


Navarro River Mean Daily Discharge, 1951-2012



I cubic foot/sec (cfs) = 449 gallons per minute= 2 acre feet per day


Results: Average Flows, Navarro River, 1951-2012



Navarro River Average Summer Flows, 1951-2012

Agricultural Land Use Changes

Results | Grower Surveys

Surveyed Growers' Farmed Acreage as % of Total Acreage

	Vineyard	Orchard	Pasture	Other	Totals
Acreage Farmed by	1333	218			1576
Survey Respondents	(48%)	(100%)	3 (5%)	22 (44%)	(50%)
Total Irrigated					
Agricultural Acreage					
in Study Area	2790	218	66	50	3124

N= 16

Range: 2 acres to 612 acres

Average Evapo-transpiration (ET) in Philo, Anderson Valley 2009-2012.

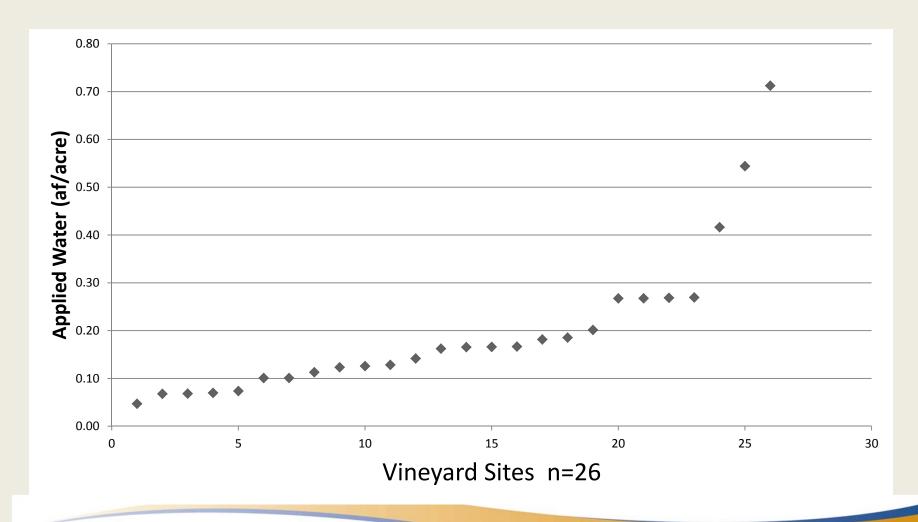
Year	2009	2010	2011	2012
Anderson Valley				
(ET inches)	32.1	31.1	31.2	32.3

Source: Roederer Estate US Adcon Data

Available Water capacity for dominant soil types in irrigated agricultural lands of the Navarro River Watershed, Mendocino County, California.

	% of		Available Water Capacity	
	Total			
Sum of MU	(n=312		low (ac-	high (ac-
(acres)	6)	Map Unit (MU) Name	in/in)	in/in)
647.1	20.7%	Pinole loam, 2-9% slopes	0.14	0.19
378.5	12.1%	Boontling loam, 2-9% slopes	0.12	0.19
		Bearwallow-Wolfey complex, 5-15%		
377.8	12.1%	slopes	0.13	0.18
190.4	6.1%	Feliz loam, 0-5% slopes	0.15	0.19
135.6	4.3%	Cole loam, 0-5% slopes	0.12	0.18
		Ornbaun-Zeni complex, 9-30%		
127.4	4.1%	slopes	0.14	0.18
92.6	3.0%	Perrygulch loam, 0-9% slopes	0.08	0.18
90.3	2.9%	Pinole loam, 9-15% slopes	0.14	0.19
2039.6	65.2%	Averages	0.13	0.19

Results | 2009 Reported Water Use Practices - Vineyards



Irrigation

- Average 60 hours total per season
- 12 applications x 5 hours/application
- Frost protection
 - Average 40 hours total per season
 - 5 events x 8 hours/event
- Most irrigation happens between July 1 – Oct 1

Results | Reported Water Use Patterns

Reported Water Use Patterns, 2009

			Volume
Crop Type	Total Acreage	Water Use Type	(af/acre)
Grapes	2790	Consumptive Use	558
		Frost Protection	678
		Total	1236
Orchards	206	Consumptive Use	457
		Frost Protection	0
		Total	457
Pasture	66	Total	132
		Cumulative Water Use	1825

*Results shown represent calculated values based on grower surveys for the 2009

growing season

Results: Vineyard Water Demand in 2009

Source	Total Water Use
Estimated Method (Full-ET)	2272 -2905 (ac-ft/yr)
Vineyard Irrigation (Grower Survey*)	537 ac-ft/yr (average)
Vineyard Frost Protection (Grower Survey)	222 ac-ft/yr
Orchard (Grower Survey)	457 ac-ft/yr

^{*}Most vineyards in the Anderson Valley are growing for quality using Regulated Deficit Irrigation (RDI) practices.

Results | Reported Water Use Patterns

Irrigation system uniformity in grape vineyards and apple orchards during 2009 field surveys

Crop	Sample Size	Mean	Std Dev	Min	Max
Grapes	26	90%	6.60%	68.70%	96%
Orchards	3	72%	41.40%	41.40%	88%

Results | Water Rights in the Navarro River Watershed

Count of Existing Total Water Rights	264
Existing Water Rights Face Value	9,635 af/yr
Licensed, permitted or pending Irrigation Water Rights (agriculture)	88
Irrigation Water Rights Combined Face Value	3,646 af/yr

Results | Off-stream Storage

Total Pond Surface Area	140 acres (avg 0.8 acres)
Count of Ponds	165

Not all irrigation ponds – some used for aesthetics, wildlife & livestock

Results | Irrigation Water Sources For Agricultural Ponds

Reservoir Water Source	Storage Volume (af)
Surface Water Diversion	134
Sub-surface Drainage	274
Captured rainfall & sheet flow	411
Totals	819

Results | Potential Agricultural Expansion

Total Existing Vineyard

Acres

Total Potential New Acres (<10% slope threshold)

Total Potential New Acres (<20% slope threshold)

2531

2652

4649

Results | Potential Future Agricultural Water Demand

		<10% slope threshold		<20% slope threshold	
	Current				
	Water Use	New	Water Needed	New	Water Needed
Crop	Rates (afa)	Acres	(af/yr)	Acres	(af/yr)
Vineyard	0.5	2,652	1,326	4,649	2,325
Orchard	2.2	2,652	5,834	4,649	10,228

Recommendations

- 1. Establish a program to provide growers with irrigation system evaluation service
- 2. Form productive partnerships among diverse stakeholders to provide input into State water policy
- 3. Investigate alternative water sources and solutions to relieve the pressure from summer surface water diversions
- **4. Assess** domestic and commercial water use in the watershed

A Quick Macroeconomic Sketch:

- One ton Pinot noir FOB vineyard: \$2500
- One ton produces 160 gallons of wine, 64 cases=\$180/case wholesale or \$11,520 per ton; fex excise tax=\$171.20 @ \$1.07 per gallon
- Retail value=\$23,040 per ton @\$30/bottle; sales tax=\$1873.15 per ton @8.13% tax rate
- 3 tons per acre average: \$5,619 per acre
- Total taxes paid: \$171.20 + \$5,619 = \$5,790.20/acre

Thank You

- Liz Spence, Jason Pelletier, TNC
- Anderson Valley Winegrowers Association
- Bob Gibson and Arnaud Weyrich,
 Roederer Estate US
- Leif Farr, Mendocino County
 Planning Department
- Rhonda Smith, UCCE Sonoma County, Mark Battany, UCCE San Luis Obispo County
- Zac Robinson, Mendocino Wine, Inc.

