Biology & Biocontrol of Lewis spider mite (*Eotetranychus lewisi*), an emerging pest in strawberries

Anna D. Howell & Oleg Daugovish (UC Cooperative Extension-Ventura)

Spider Mites

- Major recurring pest during both plantings in coastal California
- Problems associated with chemical control
 - *Resistance to miticides
 - Difficulty of applying miticides
 - Miticide residues on fruit

Twospotted spider mite (*Tetranychus urticae*)

- Usually the most abundant & damaging mite pest on strawberry
- Present in summer & fall berries

Recently, PCAs & growers began to notice a new mite emerging...

Lewis spider mite (Eotetranychus lewisi)

- Populations are increasing in Ventura County
 - Cane berries
 - Strawberry

Lewis Spider Mite vs. Twospotted (TSSM)

Twospotted spider mite (TSSM)

- Usually the most abundant & damaging mite pest on strawberry
- Multiple hosts (crops & ornamentals)
- Present in summer & fall berries
- ♀ Hibernates (Diapause) in the winter

Lewis spider mite (LSM)

- Multiple hosts (crops & ornamentals)
 - MAJOR pest of Poinsettias
 - Minor pest of citrus
- Becoming a major pest of raspberry & strawberry in Ventura Co.
- Present in fall or summer plantings (?)
- No hibernation (Diapause) period known

Damage

- Feed on the underside of leaves
 - Yellow mottling on topside
 - Necrosis on underside

- Webbing
 - Spreads mites
 - Attracts dust on the underside
 - Can change transpiration

- Reduction in fruit size & yield
- Heavy infestations cause stunting & leaf drop
- Can kill a stressed plant

Lewis TSSM

Spots Multiple One large spot on each side

Size 0.36mm 0.5mm

Zalom et al.

Lewis mite vs. twospotted spider mite development - different hosts

	Mean number of mittes at temperatures (IC)								
	15 C			20 C			25 C		
	Females	Males	Total	Females	Males	Total	Females	Males	Total
Castor bear	1								
T. urticae	0.33±0.57	0.0±0.0	0.33±0.57	7.33±4.61	2.66±2.08	10.00±6.24	13.00±4.35	4.33±2.51	17.33±6.65
E. lewisi	13.33±4.93	2.33±2.30	15.66±4.50	30.66±14.64	13.00±9.16	43.66±23.79	34.66±4.04	15.66±4.72	50.33±8.32
P=		0.0043			0.0768			0.0056	
Strawberry									
T. urticae				72.33±8.50	16.66±4.72	89.00±10.44	80.66±5.50	20.33±5.86	101.00±8.88
E. lewisi				11.33±3.21	3.33±1.15	14.66±4.72	17.33±4.72	2.33±0.57	19.66±4.93
P =	Not analyzed			0.0003			0.0002		

TSSM survives longer and produces more eggs on strawberry in cooler temps.

Lewis mobiles (strawberry host only)

TSSM mobiles (strawberry host only)

Previous lab bioassay results by Frank Zalom

What about biocontrol?

-Phytoseiulus persimilis is the commonly released predator for TSSM...

But it may not work for Lewis mite management

- Mites shifting from twospotted to Lewis
- How do you control this?

Goal:

-To figure out which predatory mite works best in management of Lewis mites

Methods

- Collected Lewis mites from the field
- Raised Lewis mite colony on clean strawberry leaves
- Ordered predatory mites
 - Neoseiulus californicus
 - Neoseiulus fallacis
 - Amblyseius andersoni
 - Phytoseiulus Persimilis

Elena M. Rhodes

- Collected Lewis mites from the field
- Raised Lewis mite colony on clean strawberry leaves
- Ordered predatory mites
 - Neoseiulus fallacis
 - Amblyseius anderson

Collected Lewis mites from the field

 Raised Lewis mite colony on clean strawberry leaves

- Ordered predatory mites
 - Neoseiulus callionnicus
 - Neoseiulus fallacis
 - Amblyseius andersoni

- Collected Lewis mites from the field
- Raised Lewis mite colony on clean strawberry leaves
- Ordered predatory mites
 - Neoseiulus californicus
 - Neoseiulus fallacis
 - Amblyseius andersoni
 - Phytoseiulus Persimilis

- Transferred 40 Lewis mites onto a new leaf

Settle for one day

- Added 10 predators of a particular species per plate

- 4 plates per predator species
- 4 plates for control (no predators)

Lab conditions: 18:6 (day:night), ~75 °F,
 ~52% RH

 Counted number of Lewis mite mobiles & eggs every 4th day for 2 weeks

P. persimilis would not feed on Lewis spider mites & starved to death. Excluded from the analysis.

Overall all 3 predatory mites can control Lewis mites...

N. fallacis attacking Lewis mite

But what happens when you have both twospotted & Lewis mites?

What are the interactions between Lewis & twospotted spider mite?

Do the predatory mites prefer one over the other?

- Added 10 predators of a particular species per plate

Lab conditions: 18:6 (day:night), ~75 °F,
 ~52% RH

 Counted number of Lewis & TSSM mobiles every 4th day for 2 weeks

How will they behave in the field?

- Environmental variability
- Spatial variability

Methods

- Sampled fields with both mite species present
 - Organic field (fall berries)
- 4 replications per treatment (1 bed per rep)
 - A. andersoni
 - N. californicus
 - N. fallacis
 - Grower Standard (P. persimilis + N. californicus)

- Collected 6 mid-tier trifoliates from each subplot per rep
 - 72 trifoliates per treatment = 288 total
- Counted number of Lewis &TSSM mobiles & eggs every week for 10 weeks (Feb April 2013)
- Counted the number of predators
- Baseline Count of Lewis & TSSM mobiles
- Released at a rate of 25,000 per acre (equivalent to what the grower was releasing)

No sig. difference between treatments Repeated measures ANOVA: p = 0.715

No sig. difference between treatments Repeated measures ANOVA: p = 0.926

No sig. difference between treatments Repeated measures ANOVA: p = 0.972

Recommended predatory mites for...

TSSM **ONLY**

P. persimilis

Photo courtesy Holt Studios, UK

Lewis **ONLY**

- To implement the best IPM program
 - Scout your fields
 - Properly ID your mites
 - Apply the best control for your situation

Acknowledgements

Frank Zalom & his lab (UC Davis) Dan Cahn & Sally Gray (Syngenta Bioline) Brett Chandler (Associates Insectary) California Strawberry Commission Success Valley Farms Paul Penza Jaime Lopez

Total spider mites counted: 99,261

Total eggs counted:

250,843