Fertilizer Value of Nitrate in Irrigation Water for Vegetable Production

Acknowledgements

- Laura Murphy, Trisha Love, Barry Farrara, Tom Lockhart
- California Department of Food and Agriculture,Fertilizer Research and Education Program
- California Leafy Green Research Board
- USDA-ARS (Sharon Benzen, David Lara, Jim McCreight)

SWRCB SBX2 1

"Pump and fertilize" was proposed as a partial solution for remediating nitrate contamination of ground water

Harter and Lund 2012

How much fertilizer credit should be taken for nitrogen in well water?

- How does the volume of applied water affect N recovery?
- Is there a minimum concentration of nitrate in water that has fertilizer value?
- Does the form of N (nitrate vs ammonium) affect recovery?
- Does high nitrate water affect soil nitrate levels?

Replicated Trials

Water N treatments were applied by drip

Irrigation Manifold for Simulating Water with Varying Concentrations of Nitrate

Two irrigation rates were evaluated

		and the second		
	A		To so the	
		olied Wa	ter	200
Irrigation Treatment	Sprinkler	Drip	Total	Nine (1)
inches				
summer crop				
110% Crop ET	3.7	7.0	10.6	-6 3
160% Crop ET	3.7	10.1	13.8	
fall crop				
120% Crop ET	3.7	5.5	9.1	
210% Crop ET	3.7	9.6	13.3	

How is nitrate in irrigation water converted to applied N?

lbs of N/acre=

applied water (inches) x NO₃-N conc (ppm) x 0.23

		Fertilizer N value		
	Applied	NO ₃ -N		
ET Treatment	Water	12 ppm	22 ppm	
	inches	lbs N/acre		
110%	7.0	19.3	35.4	
160%	10.1	27.9	51.1	

Verifying N concentration of irrigation water treatments

		Measure	Measured N concentration ^x		
#	Irrigation water treatments	NO_3 -N	NH ₄ -N	Mineral N	
			ppm		
1	Unfertilized Control	3.1	0.2	3.4	
2	Fertilized Standard	3.1	0.2	3.4	
3	12 ppm NO ₃ -N	12.8	0.4	13.1	
4	22 ppm NO ₃ -N	22.3	0.6	22.8	
5	42ppm NO ₃ -N	41.9	1.1	42.9	
6	42ppm N (30 ppm NH ₄ -N)	13.2	27.3	40.5	
Averag	ge of 17 irrigations				

Nitrate in water affected both plant size and color

Irrigation Water Treatments Affected Untrimmed Plant Weight

Irrigation Water Treatments Affected Biomass Yield

Irrigation Water Treatments Affected Tissue N

Irrigation Water Treatments Affected Crop Uptake of Nitrogen

Crop uptake of N was similar for NH₄ and NO₃ sources in irrigation water

Crop Recovery of N from irrigation water:

 $H_2O = 86\%$, Fertilizer std = 55% $H_2O = 41\%$, Fertilizer std = 20%

Did N levels in water affect soil nitrate concentration?

Fall: Soil Mineral N 0-1 foot (14 days before) harvest)

#	Treatment Description	NO_3-N	Mineral N
1	Unfertilized control (2 PPM NO3-N)	4.5	5.5
2	Standard Fertilizer (150 lb N/Acre)	17.3	18.3
3	12 PPM NO ₃ -N in irrigation water	8.7	9.7
4	22 PPM NO ₃ -N in irrigation water	5.1	6.1
5	42 PPM NO ₃ -N in irrigation water	12.0	13.0
6	42 PPM N (NO ₃ +NH ₄)	12.0	13.3
LSD _{0.05}		6.8	6.8

Summary

- Low concentrations of nitrate-N (12 ppm) in irrigation water were taken up by lettuce
- Fertilizer value of NH₄ and NO₃ sources of N were equivalent
- Volume of water applied to the crop did not affect the recovery rate of N from the irrigation water
- 2014 trials will evaluate if N in water is equivalent to fertilizer N