

SBX21:

2012 special report to the legislature on nitrate in groundwater

- Recommendation 11 suggested that a system of agricultural N use reporting would enable the estimation of a nitrogen 'mass balance' for impacted watersheds
- Both the Region 5 (Central Valley) and Region 3 (Central Coast) Water Boards are adopting some form of nitrogen use reporting

Volatilization losses can be significant for:

- Anhydrous ammonia, especially water-run
- Topdressed urea
- Animal manure

Volatilization losses are minimal in central coast production systems

- Denitrification as high as 3-4 lb N/acre per irrigation or rainfall event has been measured in coastal vegetable fields (>100 lb N/acre/year), but with the move to drip irrigation much lower losses are likely
- Nitrous oxide (N₂O), always a portion of denitrification N loss, is an air quality concern

Nitrate leaching losses are often significant, and highest with: **Excessive irrigation** High soil nitrate level **Coastal tile drain effluent:** 100 80 Nitrate mg N /L 60 40 20 Jul Mar Jul Nov Mar Nov Mar PPM NO₃-N Ib NO₃-N / acre · inch 40 - 60 9 - 14

18 - 23

80-100

Bottom line:

 Within some level of uncertainty, evaluating agricultural N management on a mass balance basis (inputs – outputs) does estimate the potential for overall environmental N loading (all forms of loss)

Bottom line:

- Within some level of uncertainty, evaluating agricultural N management on a mass balance basis (inputs – outputs) does estimate the potential for overall environmental N loading (all forms of loss)
- At similar yield levels, a grower applying substantially more N than his neighbor is probably releasing more N to the environment over time

	lb N/acre		
Inputs	Spring lettuce	Summer lettuce	Summer broccoli
Fertilizer	170	130	180
Organic amendments	0	0	0
Irrigation water NO ₃ -N	30	30	40
Total input	200	160	220

	lb N/acre		
Inputs	Spring lettuce	Summer lettuce	Summer broccoli
Fertilizer	170	130	180
Organic amendments	0	0	0
Irrigation water NO ₃ -N	30	30	40
Total input	200	160	220
Outputs			
Crop N uptake	140	140	330
Removal in harvest	70	70	100

	lb N/acre		
Inputs	Spring lettuce	Summer lettuce	Summer broccoli
Fertilizer	170	130	180
Organic amendments	0	0	0
Irrigation water NO ₃ -N	30	30	40
Total input	200	160	220
Outputs			
Crop N uptake	140	140	330
Removal in harvest	70	70	100
Balance (N uptake basis)	60	20	-110

		lb N/acre	
Inputs	Spring lettuce	Summer lettuce	Summer broccoli
Fertilizer	170	130	180
Organic amendments	0	0	0
Irrigation water NO ₃ -N	30	30	40
Total input	200	160	220
Outputs			
Crop N uptake	140	140	330
Removal in harvest	70	70	100
Balance (N uptake basis)	60	20	-110
Balance (N removal basis)	130	90	120

^{&#}x27;Strategic' N management should be able to capture much of this N

'Strategic' N management:

Make full use of non-fertilizer N

Non-fertilizer sources of N:

- Residual soil NO₃-N
- Irrigation water NO₃-N
- In-season soil N mineralization
 - prior residue effects
 - soil organic matter mineralization

Contribution of prior crop residue:

- Within 4-6 weeks after incorporation, crop residue N mineralization slows
- Therefore, the majority of residue effects on soil N availability can be directly measured by soil nitrate testing before fertilizing the subsequent crop

- Between 5 6% of soil organic matter is organic N
- You can generally count on net mineralization of at least 1-2% of soil organic
 N content during a vegetable crop season

Example:

Top 12 inches of soil weighs ≈ 3,800,000 lb/acre

≈ 2,000 lb organic N per % organic matter ≈ at least 20 lb N/acre per % soil organic matter

Strategic N budgeting:

Scenario 1:

- Spring lettuce after winter fallow
- Loam soil, 1.2% organic matter
- Presidedress soil NO₃-N = 5 PPM
- Irrigation water NO₃-N = 10 PPM, 6" of crop ET
- Sprinkler irrigation throughout

Non-fertilizer N		lb N/acre
Residual soil NO ₃ -N	5 PPM x 3.8 =	19
Irrigation water N	10 PPM x 0.23 x 6 =	14
Soil N mineralization	1.2% O.M. x 20 lb N/acre =	24
Total non-fertilizer input ('N credits')		57
Crop N uptake requirement		140
Minimum fertilizer requirement		83
Realistic fertilizer requirement		???

Strategic N budgeting:

Scenario 2:

- Summer lettuce after spring broccoli
- Clay loam soil, 2.0% organic matter
- Presidedress soil NO₃-N = 25 PPM
- Irrigation water N = 30 PPM, 6" of crop ET
- Sprinkler irrigation for emergence, drip finish

Non-fertilizer N		lb N/acre
Residual soil NO ₃ -N	25 PPM x 3.8 =	95
Irrigation water N	30 PPM x 0.23 x 6 =	41
Soil N mineralization	2.0% O.M. x 20 lb N/acre =	40
Total non-fertilizer input ('N credits')		176
Crop N uptake requirement		140
Minimum fertilizer requirement		0
Realistic fertilizer requirement		???

How much 'cushion' is needed to guarantee maximum production?

https://ucanr.edu/cropmanage

University of California

Nitrogen Management Training

for Certified Crop Advisers

Salinas, March 5-6

Register at:

https://capcaed.com

University of **California**Agriculture and Natural Resources

