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Abstract

The increase in groundwater nitrate concentration measured in domestic wells, irrigation wells,
and public supply wells lags significantly behind the actual time of nitrate discharge from the land
surface. The lag is due, first, to travel time between the land surface or bottom of the root zone and the
water table, which ranges from less than 1 year in areas with shallow water table (<3 m (10 ft)) to
several years or even decades where the water table is deep (>20 m (70 ft)). High water recharge rates
shorten travel time to a deep water table, but in irrigated areas with high irrigation efficiency and low
recharge rates, the transfer to a deep water table may take many decades.

Once nitrate is recharged to groundwater, additional travel times to shallow domestic wells are
from a few years to several decades, with travel times of one to several decades, and even centuries, for
deeper production wells.

Further information (publications, related reports, multi-media materials) is available at
http://groundwater.ucdavis.edu.
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1. Introduction and General Conceptual Overview of the
Approach

1.1 Nonpoint Source Pollution a Global Groundwater Quality Threat

Nonpoint source (NPS) pollution of groundwater has been recognized as a key water quality
problem worldwide (WWAP, 2009). Agriculture is considered the most dominant NPS polluter of
groundwater, primarily through emissions of nitrogen and salt, but also pesticides and other farm-
chemicals (Humenik et al., 1987; Bower, 2000; VanDrecht et al., 2003; Vitousek et al., 2010; Watanabe
et al., 2010). Nitrate-nitrogen is considered by far the most common type of groundwater contamination
associated with agricultural activities (e.g., Spalding and Exner, 1993; Harter et al., 2002; Spruill et al.,
2002; VanDrecht ,et al. 2003; Burow et al. 2010). Groundwater nitrate is largely derived from fertilizer
nitrogen and animal nitrogen applied in agriculture, where nitrogen is a vital nutrient for plant growth
(WWAP 2006, p. 117). The increasingly intensive use of nitrogen-based fertilizers in agriculture has
allowed global food production to stay ahead of rapid population growth (Almasri and Kaluarachchi
2007; Stadler et al., 2008; Laftouhi et al., 2003), but at potentially significant cost to current and future
water quality in production wells (Corwin and Wagenet, 1996). With further growing world population
and higher standards of living, food consumption is estimated to increase 70% over the next four
decades, while global land and water resources have limited growth reserves. Intensification of
agriculture will therefore continue (Molden, 2007). Besides nitrate, long-term salinization of
groundwater basins from nonpoint sources, particularly in semi-arid and arid irrigated agricultural
regions is a second critical threat to groundwater quality around the globe (Burkhalter and Gates, 2005;
Martin-Queller et al., 2010).

The degradation of groundwater resources not only impacts ecosystems worldwide via return
flow of groundwater to surface water (Bouwman et al., 2009), but it affects both irrigation water
(salinity) and drinking water quality (nitrate, salinity, pesticides, pathogens). Approximately half of the
global population depends on groundwater as a drinking water source (UN WWAP, 2003; Giordano,
2009). In contrast, most of the global population in intensively farmed agricultural regions such as the
California Central Valley, the North-American High Plains and Floridan aquifers, Central Europe’s
unconsolidated aquifers, the Indo-Gangetic aquifer complex, and the North China plains, relies on —
often shallow — groundwater (e.g., Power and Schepers, 1989; Chakraborti et al., 2011). Globally, 43% of
consumptive water used in irrigation is groundwater (Siebert et al. 2010). Furthermore, particularly in
Europe and North America, the need to protect drinking water quality for large populations sectors has
driven and continues to drive NPS policy (e.g., Sonneveld and Bouma, 2003; Dowd et al., 2008 ).

Sound policy requires thorough scientific understanding of nonpoint sources and how they
work, and of the linkage between nonpoint sources and groundwater discharges to users or affected
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ecosystems (domestic wells, irrigation wells, urban/municipal wells, springs, discharges to stream
reaches). Significant scientific effort has been dedicated to understand, manage, and monitor potential
sources, to understand the dynamics of NPS pollutants in the vadose zone and in groundwater, and to
assess the environmental and public health consequences of NPS pollution of groundwater (Addiscott
and Wagenet, 1985; Corwin et al., 1999; Pavlis et al., 2010). The spatio-temporal and process complexity
of NPS pollution of groundwater on one hand and the number and large diversity of affected
stakeholders on the other hand (Figure 1) requires management of large datasets, the bridging of
possibly huge datagaps, upscaling, the use of potentially complex models, and — most importantly — that
science effectively communicates with policy and decision makers (King and Corwin, 1999; National
Research Council 1993).

Major Land Use Classes

[j Subtropical Fruits

- Deciduous Fruits and Nuts
Field Crops

| | Grain and Hay Crops
B e Ag

— Native Vegetation
- Pasture Land

- Semi Ag

- Truck and Berry Crops
- Urban

- Vineyards

*  Wells

; .:‘ 024 8 12 16
m s Kilometers

Figure 1. Typical spatial variability of a land use (and implicitly, associated diffuse pollution) in an intensively
managed semi-arid agricultural region with significant groundwater pumping for irrigation (black dots), Tule
River Groundwater Subbasin, Central Valley Aquifer System, California. (Source: modified from Ruud et al.,
2004.)

1.2 Key Differences Between Nonpoint Source Pollution and Point Source
Pollution Dynamics

Agricultural activities are the dominant nonpoint source of groundwater nitrate and salts. Other
significant sources include urban wastewater discharge, septic systems, wastewater holding ponds, and
atmospheric deposition. For assessment, planning, and regulatory purposes, nonpoint source pollution,
particularly from nitrate and salt, has a distinctly different problem set than point sources:
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1. Control measures for point sources have been in development now for four decades (e.g., U.S.
Code Title 42 Chapter 103 U.S. Comprehensive Environmental Response, Compensation and
Liability Act of 1980), while control and monitoring measures for nonpoint sources of
groundwater have only begun to be developed over the last one to two decades (e.g., EU
Nitrate Directive® and California Salt and Nutrient Basin Plan’ development).

2. Point sources, most commonly, are accidental spills of limited duration contributing a negligible
fraction of basin recharge. Nonpoint sources are commonly associated with natural or
intentional, managed or unmanaged sources of recharge that provide a significant fraction or
even the majority of a groundwater basin’s recharge on a time-varying but continuous basis
(GWSP, 2008; UN/WWAP, 2006; Burow et al., 2010).

3. Point sources tend to be of limited spatial and temporal extent. One-time spills may occur over
areas from less than 0.1 ha (0.25 acres) to few ha in size (Freeze and Cherry, 1979; Bower, 2000;
Domenico and Schwartz, 2008). In contrast, nonpoint source pollution can occur repeatedly
across the majority of the land surface area of entire groundwater basins, particularly in
agricultural regions. Sources are spatially near-contiguous, while individual source facilities
(liable parties) range from ten to several hundred hectares in size and are characterized by large
spatial as well as temporal variability and, hence, uncertainty. For example the volume of
irrigated water and its concentration in nitrogen vary significantly with crop type and season. In
addition there is significant uncertainty related to the estimated amounts of excess nitrate that
leach to groundwater (Loague and Corwin, 1998). Similar uncertainty exists in rain-fed crops,
where nitrate leaching depends on various factors such as rainfall intensity, air temperature
(Xin-Qiang et al., In press), the form of nitrogen application (Pilbeam et al., 2004), N application
rate, form, and timing (Basso et al., 2010), etc.

4. Point sources of pollution are often very intensive (i.e., the associated pollution level
(concentration) at and near the source can be many orders of magnitude above the regulatory
limit). Nonpoint source pollution is typically of low intensity (i.e., at concentration levels near
the regulatory limit and up to one order of magnitude above the regulatory limit (e.g., nitrate
and salts)) (Burow et al., 2010).

These differences between point source pollution and nonpoint source pollution of groundwater require
that assessment methods, monitoring approaches, and regulatory frameworks for nonpoint source
control do not simply copy the approaches taken in the point source arena, but that methods are
developed specifically for nonpoint sources.

1.3 Groundwater Nonpoint Source Assessment Tools

Studies have developed various modeling tools for assessing and predicting aquifer pollution
impacts or concentration levels in response to land use and management strategies. These models can
be generally grouped into three categories:

! http://ec.europa.eu/environment/water/water-nitrates/index_en.html
2 http://www.swrcb.ca.gov/centralvalley/water_issues/salinity/index.shtml
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1. Overlay and index methods, where different parameters of spatially distributed hydrologic,
geographic, soils, and source information are combined to give an estimation of the vulnerability
in the form of an index (National Research Council, 1993; Pavlis et al., 2010) such as DRASTIC
(Aller et al., 1987), SINTACS (Civita and De Maio, 2004), etc.

2. Statistical methods that estimate the vulnerability by correlating spatial variables with actual
occurrence of pollutants in the groundwater (Pavlis et al., 2010) such as regression (Nolan et al.
2002; Worrall et al. 2000), fuzzy logic (Uricchio et al., 2004), etc.

3. Process based methods to simulate the contaminant transport using mathematical formulas
(Fogg et al., 1999).

The majority of these latter models are limited to the simulation of pollutants in the vadose zone,
while simple methods such as zero-order mixing models (Mercado 1976; Lee 2007) or vertical plug-flow
models (Refsgaard et al., 1999; Hansen, 1991; Cho and Mostaghimi, 2009) are used for the estimation of
the fate of contaminants in the saturated zone. These kinds of approaches are not able to properly
capture the spatial and temporal variability of contaminant loading across large aquifer systems.

Detailed spatio-temporal nonpoint source impact assessment in an aquifer requires numerical flow
and transport models in two and three dimensions. A few studies developed analytical solutions to
governing flow and transport equations (Leij & Dane, 1990; Fry et al., 1993; Perez-Guerrero et al., 2009);
however, their applicability is limited to simple geometry cases under special boundary conditions.
Coupled numerical solution schemes of groundwater flow and transport have been applied in
groundwater remediation studies and nonpoint source prediction models at relatively small scale sites
(Trowsdale and Lerner, 2007) or large scales (Carle et al., 2006), but often using relatively coarse gridded
solutions (Almasri and Kaluarachchi, 2007; Jiang and Somers, 2009; Zhang and Hiscock, In Press).

The implementation of a fully three-dimensional flow and transport model for nonpoint source
assessment is largely limited by computational resources; typically, current numerical flow and transport
models are designed with 10° to 10 degrees of freedom (particle lines, finite difference cells, finite
elements), allowing for 10° — 10® discretization points per dimension. At typical (point source)
contamination sites to which these are applied, the resulting spatial discretization is on the order of 10™
to 10° meters (Carle et al., 2006). On the other hand, the simulation of entire groundwater basins
affected by, for example, agricultural nonpoint source pollution, being tens to hundreds of kilometers
across (e.g., Floridan aquifer system, High Plains aquifer system, Central Valley aquifer system, North
China Plain aquifer system, Indo-Gangetic aquifer system), would require spatial grids that are four to six
orders of magnitude larger (10° — 10" degrees of freedom), at effectively similar discretization. The
latter is necessary to properly capture individual sources (e.g., crop fields, lagoons, septic leach fields)
and the impacts to individual contaminant sinks or receptors (wells, stream reaches, springs) across a
basin (Bloomfield et al. 2006). The application of classic numerical contaminant modeling approaches to
model nonpoint sources and their impacts at multiple locations (sinks) across entire basins is generally
beyond current computational capacities. This is particularly true if the focus is on the impact to
individual production wells (domestic, municipal, irrigation), of which there may be tens of thousands
across a single groundwater basin.
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To render the computational burden tractable, alternative methods have been proposed. For
example Lin et al. (2010) developed a simplified numerical model where the governing equations of 3D
groundwater flow and contaminant transport are replaced by a 2D finite element approximation in x-y
direction, with a 1D finite difference approach for the vertical direction. Almasri and Kaluarachchi (2007)
used surrogate models such as Modular Neural Networks in order to predict nitrate contamination in
the Sumas-Blaine aquifer in Washington State, but performance was found inferior to the classical fate
and transport model.

A widely used alternative technique is the streamline simulation model, where a multi-dimensional
simulation problem is decoupled into multiple one-dimensional problems (Martin and Wegner, 1979).
Streamline models have been used extensively in petroleum engineering (Blunt et al., 1996; Baker et al.,
2002). Jang and Choe (2002) utilized the streamline model to simulate solute transport in fractures, and
found that the Breakthrough Curves (BTCs) from simulations matched excellently with experimental
data. Bandilla et al. (2009) combined an analytic element based solution of groundwater flow with the
streamline method neglecting transverse dispersivity effects. Recently, Herrera et al. (2010) proposed an
improved version of the method for simulating reactive solute transport in porous media. Streamline
methods have also been used for model calibration (Jang, 2007; Jang and Choe, 2002, 2004), where the
flow domain is decomposed into streamlines and the calibration parameters are adjusted along the
streamlines. The efficiency of the streamline method stems from neglecting transverse numerical
dispersion. Depending on the modeling objective, the method is computationally far less demanding
than a full three-dimensional solution at equivalent high resolution.

Although the streamline method has been established as a reliable alternative solution to simulate
transport in aquifers, simulation time for long simulation periods can be exceptionally large. For
environmental managers interested in evaluating or optimizing multiple nonpoint source management
scenarios, these simulation models are not practical. Tools for efficiently evaluating the long-term
impacts of past, current, and (alternate) future nonpoint source loading scenarios at the groundwater
basin scale are still lacking.

1.4 Proposed Modeling Framework

In this report we developed and use a very efficient, yet highly resolved transport simulation
approach that accounts for and takes advantage of the distinct attributes of nonpoint source pollution
(as opposed to point source pollution). Our objective is to design a Non Point Source Assessment Tool
(NPSAT) applicable to large groundwater basins with a highly heterogeneous, but spatio-temporally
continuous coverage of nonpoint sources, that gives stakeholders, decision makers, and environmental
managers specific information on the time-dependent statistical distribution of nonpoint source
pollutants in a finite-sized ensemble of discrete groundwater discharge surfaces (e.g., well screens and
streambeds). The latter comprise a distributed set of discrete compliance surfaces, which can be further
categorized (grouped) by significantly controlling factors such as depth, hydrogeologic sub-regions,
landscape and land use regions, etc. The concentration history at a discharge surface is controlled by
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aquifer properties and their spatial distribution, by groundwater pumping and other discharges, and by
the spatio-temporally variable, continuous nonpoint source pollution fluxes across the recharge surfaces
of the aquifer. Specifically, our objective is to develop an efficient physically-based hydrogeological
modeling framework to predict time-dependent pollutant concentration histograms and their
probability distributions for compliance surfaces in a groundwater basin under spatio-temporally
variable nonpoint source loading.
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2. Nonpoint Source Assessment Toolbox

2.1 Conceptual Approach

Groundwater flow is governed by Darcy’s law and the conservation of mass (Bear, 1979):

dh
Vq + Q; = V(KVh) + Q, = Sa (Egn. 5)
subject to appropriate initial and boundary conditions. Here,q is the Darcy flux, h is the hydraulic head,
K is the hydraulic conductivity tensor, Q, represents a vector of sources and/or sinks, S is the storage
coefficient, and t represents time. The governing equation of contaminant transport in groundwater is
(Bear, 1979):

(')c_

Rat_

V-(DVc) —V(vc) + G (Egn. 6)
where c is the concentration of the contaminant,v = q/6 is the velocity field, 8 is the porosity of the
porous medium, D is the dispersion tensor, t represents time, G represents sources and sinks (e.g., via
recharge, wells) and R is the retardation factor (Putti et al. 1990). Pollutant concentrations (Egn. 6) in a
groundwater basin are controlled by spatio-temporally variable, dynamic sources and sinks of water and
associated (dissolved) pollutants (Figure 1) and by spatially distributed (heterogeneous) aquifer
properties.

Of particular interest to groundwater quality protection and management is the pollutant
concentration (historical, current, and future) in water discharged from a (finite) set of individual wells
or gaining stream reaches (Compliance Discharge Surfaces-CDSs) within a groundwater basin. The
pollutant concentration history of the well water or stream reach discharge is here referred to as the
breakthrough curve (BTC). The BTC at the CDS is controlled by the pollutant loading history in the source
area of the CDS and by the solute reactions and dispersion along the groundwater flow paths between
source area and CDS. The CDS source area is defined as the recharge area associated with all
groundwater flow discharging into the CDS. Generally, recharge and pollutant loading within the source
area may be spatially and temporally variable and not all locations within the source area contribute to
the associated CDS at all times, due to transient changes in groundwater flow direction.

To yield the solution of Eqns. 5 and 6 tractable for nonpoint source pollution at the basin scale,
yet with sufficiently high resolution, we make three critical simplifications: first, we assume that
groundwater flow is steady-state:

V-(KVh) +Q,=0 (Egn. 7)

Prop. 50 Dairy Groundwater 17 © UC Davis — 8/09/2013



Second, we assume that transverse dispersion in Eqn. 6 is negligible (longitudinal dispersion only), and,
third, we assume that pollutant reactions are limited to first order degradation, linear sorption, or a
combination thereof.

We support the first assumption with the following heuristic consideration: a nonpoint source
pollutant entering an aquifer at a specific location, but continuously over a period of time may discharge
at multiple proximate CDSs at different times if groundwater flow is sufficiently transient. However, our
focus here is on exceedance probabilities and hence on the ensemble set of BTCs across a group of CDSs
(and, hence, a group of source areas), which are much less sensitive to transient changes in source area.
Source areas of CDSs may partially overlap due to transient flow conditions. Hence, a steady-state flow
approximation still allows for capturing both central tendencies (mean travel time) and the degree of
variability of travel time within a CDS and between CDSs.

The second assumption is thought to introduce limited error, because the lateral extent of
nonpoint sources is large relative to the length scale of transverse dispersivity or transverse
macrodispersivity (Neuman, 1990; Gelhar et al., 1992; Kim et al., 2004). The third assumption has been
found to be applicable to a wide range of nonpoint source pollutants, including salinity, nitrate, and
pesticides (Beltman et al., 1995; Lindenschmidt, 2006; Almasri and Kaluarachchi, 2007).

The steady-state flow problem Eqn. 7 is separable from the transport problem Eqn. 6 and here
solved subject to the appropriate aquifer domain and boundary conditions using a finite element
method (FEM). The grid resolution is chosen to capture the spatial pollutant loading variability as well as
the flow dynamics around individual CDSs with sufficient detail. For example, the average size of
individual sources in a typical agricultural region (California, Central High Plains, North China Plains,
Central Europe) varies from 10’ to 10° m? (103 — 10’ ft?); hence, the maximum size of a side of an
element is in the range from 10 m (~33 ft) to 1000 m(~3300 ft). Near the CDSs, resolution is on the order
of 10 m (~33 ft) (e.g., Figure 1 (Pilot study area)) to provide appropriate flow field resolution near the
well.

2.2 High Resolution Groundwater Velocity Field Computation

Nonpoint contamination sources exhibit significant variability across source types (agricultural
crops, septic leach field, ponding basins/lagoons) and among similar sources managed by different
landowners and subject to variable land uses (e.g., varying crops). Nonpoint source loading is also highly
variable in time. To assess nitrate and other NPS pollution in domestic and public supply wells, spatial
variability must be resolved to the scale of individual wells and their source area or finer. For some NPS
pollutants, such as nitrate and salinity, which typically vary over a relatively narrow range near
regulatory limits (+/- one order of magnitude), temporal variations of source loading at the annual and
inter-annual scale drive subsequent well pollutant levels, while shorter-term and very small-scale
variations in the pollutant signal are absorbed by the mixing that occurs in typical production well
screens. Proper resolution of physical transport processes in groundwater requires high resolution

Prop. 50 Dairy Groundwater 18 © UC Davis — 8/09/2013



computer models and limits the application of process models to large groundwater basins (10% to 10°
km? (3.8x107 -3.8x10" mi?). For example, the average size of individual sources in a typical agricultural
region (California, Central High Plains, North China Plains, Central Europe) varies from 10° to 10° m? (10°
— 10’ ft?) (i.e., the maximum size of a side of an element or cell likely is in the range from 10 m (33 ft) to
1000 m (3280 ft)). Process-based model applications have therefore been limited to site-specific studies
of pollution, primarily point source pollution, particularly if aquifer heterogeneity is also considered.

In this report the process-based regional modeling is achieved by introducing an automated
two-step domain decomposition method where the domain is first simulated using a coarse resolution
and then is divided into several overlapping sub-domains for either sequential or parallel high resolution
simulation of flow and transport. Boundary conditions for the sub-domains are interpolated from the
coarse grid solution, while a weighted average scheme is used to smooth the velocity field across sub-
domain boundaries.

In general Domain Decomposition (DD) Methods are special techniques for solving linear or non-
linear systems of equations arising from the discretization of partial differential equations (Smith et al.,
1996). The majority of the DD methods require intervention at a computing level that existing simulation
models either do not provide (COMSOL, FEFLOW) or that is very difficult to implement (MODFLOW,
MT3DMS, HYDROGEOSPHERE). Here we use a simplistic domain decomposition method, which has the
advantage that it can be combined seamlessly with the majority of the existing simulation models.

According to the simplistic DD, the aquifer is initially treated as a single domain Q and simulated
using a coarse discretization, resulting in a coarse hydraulic head field h¢. Secondly the domain Q is
divided into N sub-domains Q4, £,, ..., Qy of very fine resolution. In this report we choose to divide the
domain into orthogonal sub-domains, but the same method can be extended to any arbitrary sub-
domain shape. We define the boundaries Q) of domain Q as external, and the artificial boundaries [}, as
internal. Note that dQ,, (i.e., the boundary of sub-domain) consists either of part of 3Q and I}, or
exclusively of internal boundaries [,. To assign boundary conditions to internal boundaries [, we use an
interpolation method I_,r, where the unknown boundary conditions I, are interpolated from the

coarse solution h¢ and the fine head field h,{ for each sub-domain n is calculated independently. At the

end of this process, h/ is the union of all individual simulation results b/ = h{ u h{ u..u h,’:,.

However, based on our simulation results already obtained, it was found that the resultant fine
head field h/ exhibits discontinuities across the internal boundaries [},. To alleviate this problem, we
propose to offset the artificial sub-domains boundaries at a specified distance [, thus producing an
overlapping zone of width 21,¢. As shown in Figure 2 the aquifer domain can be of any arbitrary shape,
and the simulated area of each sub-domain is defined as the intersection of domain Q and the extended
sub-domain boundary. In Figure 2, the solid red lines correspond to the non-extended sub-domain and
the green dashed lined to the extended sub-domain after the offset operation.
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Let i be a discrete point, located within the j non-extended sub-domain and also within M
extended sub-domains (eg., Figure 2, the point i is located within the 2" hon-extended sub-domain and
in the 8" extended sub-domain eg., M = 1). Each sub-domain returns a slightly different solution
h{ # hf # hf*1 # ... = hM as a result of the different boundary conditions, where k € [1, M] are the

subdomain IDs. In the case of nonconforming meshes, an interpolated value is used for the heads
h¥, nE*1, AN
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Figure 2. Schematic illustration of Simplistic Domain Decomposition Method.

Subsequently the M + 1 head values can be averaged to obtain the head for point i. However, it has
been observed that points closer to the boundaries have a larger head discrepancy from true head
values. To counteract this problem, we propose a weighted average scheme, where the weights are
taken proportional to the distance from the barycenter® of each sub-domain:

M

— 1

hi = S nZWi"h?;ne[j,k,k+1,,,,,M] (Egn. 8)
Zn Wi n=0

where h' is the calculated head of point i based on the solution of sub-domain Q,, and w;* is the weight
of point i with respect to sub-domain n, calculated by the following empirical formula:

Wln = min{ W lx/z ’ lofﬁ |xi - x(","ll ’ w lx/z ’ lOfr Ixi - x;’;l (Eqn 9)

®The barycenter of an object is the center of Mass
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where x;, y; are the coordinates of the point i, I, L, are the sub-domain lengths before the offset
operator along the x and y directions, respectively (see Figure 3 left), x., y. are the coordinates of the
barycenter of the orthogonal and W is a geometric function defined as:

x—(l+d)

Eqn. 10
~2d (Eqn. 10)

w(l,d,x) =
It can be seen from Eqn. 10, that input arguments [ and d of Eqn. 10 are constants for each sub-domain.
Egn. 9 returns zero weights for the points that lie on the outer offset edges and weights of ones at the
inner offset edges, with weights that vary linearly within the overlapping zone between these two
numbers (Figure 3, Right). The negative weights outside the extended orthogonal are not used and they
are ignored. The result of the above formulation is a smooth velocity field across the artificial
boundaries.

Outer offset boundary

Overlapping Weights

/ area \ lOf

I

[12

N
(x(.'! yc) 1_ lof l I Inner offset boundar
I ~= o Lo | of

T Mon Ovgerlapping

Inner offset boundary area

-

QOuter offset boundary

Figure 3. Left) Geometric definition of symbols involved in the weight calculation, Right) Weight function.

The velocity field is then used by transport simulation model of NPSAT for a highly efficient, streamline-
based quasi-3D solution of an (arbitrary) solute transport equation yielding a pollutant unit response
Functions (URF).

2.3 Transport Simulation: Streamlines

Neglecting transverse dispersion, the transport equation (Eqn. 6) is solved through an ensemble
of one-dimensional streamline-based solutions focused on the CDSs rather than a fully three-
dimensional solution. Obtaining a quasi-3D solution with the streamline approach specifically for CDS
locations can be significantly more efficient than computing fully three-dimensional transient solutions
over the entire groundwater nonpoint source contamination domain for time-horizons spanning
decades to centuries (Thiele, 2001).
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Here, we define streamlines by their exit points on the CDS and use backtracking to the source
area (Figure 4). Exit points of streamlines are distributed across each CDS such that each streamline
represents a known fraction of flow into the CDS. Streamline exit points around a well screen CDS are
organized in multiple horizontal layers, each with a finite number of exit points per layer: Ny = N - Np,;
where N, is the number of layers, N, is the number of exit points per layer and N is the total number
of streamlines exiting on the well screen. Streamline contributions to the CDS BTC are weighted based
on the exit velocity at the CDS.

T

Well screen 42
£ Streamlines

Figure 4. Distribution of exit points around the well screen.

The accuracy of the breakthrough curve simulation at the CDS is determined by the number of
streamlines used relative to the (spatio-temporally variable) pollutant loading across the source area
(source loading). For computational efficiency, a balance must be sought between accuracy and
numerical efficiency. The choice of the number of streamlines used is application-specific and depends
on the desired accuracy. Given typical uncertainties and inaccuracies associated with estimating
groundwater flow parameters and source loading, a practical simulation goal is to obtain discharge
(well) concentrations that have a numerical accuracy within 5% of the true mathematical solution or,
alternatively, at the 5%—10% level of a problem-specific contaminant concentration level of interest
(e.g., drinking water limits for nitrate, salinity), whichever is larger. Consider a nonpoint source
concentration that varies between 10% (background) and 1,000% (intensive source) of the regulatory
control level while recharge is relatively uniform. This is typical for nitrate and salinity pollution from
agricultural landscapes (Harter et al., 2002; Burow et al., 2010). In this case, the scenario requiring the
highest resolution occurs if 1% of the CDS source area has the maximum concentration of 1,000% of the
regulatory control level, while the remainder of the source area recharges at a background
concentration of only 10% of the regulatory control level. Hence, the high polluter adds (1% - 1000%=)

Prop. 50 Dairy Groundwater 22 © UC Davis — 8/09/2013



10% of the regulatory concentration level to the background concentration at the CDS. The number of
streamlines must be sufficiently large to ascertain that the procedure captures the 1% of the source area
with high concentration. Generally, from 10° to 10% streamlines are therefore needed to properly
simulate the BTC at such a CDS.

2.4 Streamline Computation

To define the streamline associated with each exit point on the CDS, a backward particle
tracking is performed for each of the N; exit points, and the positional and velocity vectors are
computed for Ny X Ngps streamlines, where N.ps is the number of CDSs included in the simulation
area. Backward particle tracking for streamlines has two distinct advantages; transport is computed only
for the part of the aquifer that is of interest to the simulation outcome (concentration hydrographs at
contaminant sinks), and by using backward particle tracking to define streamlines, we avoid the so-
called “weak-sink” problem in numerical solutions of (5) (Zheng and Wang, 1999).

For each starting point i; € [1, N,] a backward particle tracking is performed until the particle
intersects the water table, yielding a streamline S;SCDS. In groundwater, the streamlines describe the

time t for a particle to travel a certain distance s within the groundwater velocity field. Mathematically
the streamlines are expressed by the following first-order, initial-value, ordinary differential equation:

dfp - -
W =y (xp, t)

(Egn. 11)

fp(t = Tp) = J_C)po

where J_c’p is the position vector, ﬁp is the pore velocity vector, and J'C’p(t = rp) is the starting point (e.g.,
exit point of streamline Figure 4). Eqn. 11 can be solved analytically (Pollock, 1994) or numerically using
any known numerical methods. In this report we used a hybrid numerical integration method. The
method is a mix of the predictor-corrector scheme and the fourth order Runge-Kutta integration

method. The method starts by calculating the velocity ﬁp at a given point fp . The velocity is computed

through interpolation based on the head field. Next we estimate a new point 551()1)1 using an explicit Euler
formula:

—)(1) _ = -

Xpe1 = Xp + U ‘h (Egn. 12)

2(1)

Where h is a predefined step. According to the predictor-corrector scheme, the position Xpi1 is

improved iteratively using the corrector:
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) 1 .
>(1+1 - - - .
D=, + S W + 5y h; =123 (Eqn. 13)
The iterations stop when the discrepancy between the positions of points i and i 4+ 1 is smaller than a
specified threshold.

Typically, based on our simulations, the predictor-corrector scheme converges after 2-5
iterations. However, it was observed that in some cases (i.e., very irregular geometry of mesh elements)
the predictor-corrector scheme either does not converge fast or in very few cases does not converge at
all. To counteract this, we employed a fourth order Runge-Kutta integration method when the iterations
of the predictor-corrector integration exceed a certain number without converging (e.g., 10). In these

2(1)

cases the new position xp+1is calculated using Eqn. 12 where ﬁp is the weighted average of four

velocities along the direction of flow.

A critical step in the particle tracking method is the computation of velocity, based on a
hydraulic head field. In general, velocity is defined as the negative gradient of head divided by the
aquifer porosity (i.e., v = —KVH /0, where K is the hydraulic conductivity tensor, H is the hydraulic
head, and 8 is the porosity). According to the finite element method a continuous hydraulic head
H(x,y, z) field is approximated as the weighted average of the heads H; at specific discrete locations
i =[1,2,...,N] (i.e., the nodes of the finite element mesh) weighted by the shape functions N;(x, y, z),
H(x,y,2z) = XN Ni(x,y,z)H;. Similarly, the gradient of the hydraulic head is approximated as the
weighted average of the heads H; multiplied by the gradient of the shape functions VN;(x, y, z). Since
the hydraulic heads H; are computed from the solution of the groundwater flow equation, the
calculation of velocity is simplified to the calculation of the shape function derivatives. However in 3D
models, shape function derivatives are very complex expressions of x, y, z. In this report we used
exclusively prism elements (Figure 5) and isoparametric shape functions, which simplify the derivative

calculations.
4 6
\/
d
Y S S
u
u, 3 3

Figure 5. Prism element.

Isoparametric shape functions are defined on an element local coordinate system and in the case of
prism elements are expressed as the following:
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N,=u, (1-v)/2
N,=u,(1—-v)/2
Ny =u3(1-v)/2
u, (1+v)/2
Ny =u,(1+v)/2
Ng=us(1+v)/2

(Egn. 14)

=
I

where u; + u, = uz. Note that shape functions are defined in a local coordinate system N (u,u,, v) and
velocity computation requires the derivatives with respect to the physical coordinate system
dN(x,y,z). However the conversion is straightforward and is obtained by the following equation:

ON(x,y,z) =] 'G-N (Egn. 15)

where G is the gradient operator in the local coordinate system G = [a/au1 a/auz a/(’)v]T' N =

[N;,N,,..,Ng]and ] = G- N - [xy z], where X = [xq, X3, ..., X¢]T, ¥ = [V1, V2, -, V6]T, and z =

(21, Z, -, Z6] 7.

In the above analysis we used linear shape functions. Higher order elements can be also used, at the
expense of computational complexity and increased CPU runtime.

After the calculation of the streamlines, each one consists of a positional vector Xx;, and velocity
vector v;. The positional vector X; contains the distance along the streamline SiiSCDS measured from the
initial point i, and the velocity vector v; contains the velocity magnitude that corresponds to positions
of vector x;. Note that the last element of vector X; is the key link of the streamline SiiSCDS with the

nonpoint source loading function L;; j € [1, Njzna], and eventually links each exit point on the CDS with
a contamination source L;.

2.5 Unit Response Function Approach

The linearization of the transport problem (Eqn. 6) allows for the application of the principle of
superposition (Jury and Roth, 1990); the concentration history at any streamline exit point on the CDS,
due to a temporally variable source loading history at the associated source boundary, can be computed
as a superposition of solutions of the so-called unit response functions (URF). URFs have been widely
used for the simulation of rainfall-runoff processes (Saghafian, 2006; Jukic and Denic-Jukic, 2009), where
the URF is known as unit hydrograph. Researchers also employed URFs as transfer functions to simulate
solute transport in the unsaturated zone (Jury, 1982; Jury et al., 1982, 1986; Jury & Roth, 1990; Heng
and White, 1996; Stewart and Loague, 2003; Jaladi and Rowell, 2008; Mattern and Vanclooster, 2010)
and in watersheds (Botter et al., 2006). Here, the transfer function concept explored in Jury and Roth
(1990) is interpreted as a transfer function across a finite-sized three-dimensional streamtube linking a
fraction of the source area with a fraction of the CDS. Each streamline represents an infinite number of
stream-filaments (particle paths) within the associated streamtube (Ginn, 2002).
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dac d dc
c_0 (0 _ Eqn. 16
9t ox (D % w‘) (Ean. 16)

2.6 Transport Simulation along Streamlines

For each streamline, a one-dimensional transport model is applied to compute the URF.
Generally, any transport model may be applied within the NPSAT framework to compute the URF
provided that the superposition principle can be applied (e.g., Continuous Time Random Walk
(Berkowitz et al., 2006), Fractional Advection Dispersion equation (Meerschaert et al., 1999), the
tempered one-sided stable residence time density (Cvetkovic, 2011), and others). Here, we use the one-
dimensional Advection Dispersion Equation (ADE) (Jury and Roth, 1990):

subject to:

c(x,0)=0
c(0,t) = 1;t > 0 (Heaviside step function input)

(5) o=

X=Xmax

(Egn. 17)

where D represents the effective macrodispersion, given by D = &, v. The macrodispersivity, &;
intrinsically accounts for the effects of aquifer heterogeneity within the streamtube represented by the
1D streamline. Consistent with field experiments (Gelhar et al., 1992) and numerical experiments (Green
et al., 2010), the longitudinal macrodispersivity, &; is scaled relative to the length of the streamline,

a, = f(Ls) (Egn. 18)
where Lg is the streamline length. The velocity varies along the streamline, and is calculated from the

flow solution by the norm v = /v,? + v§ + vZ. The solution to Egn. 16 is obtained numerically for each

streamline. The streamline URF is computed from the resulting solution c(t)
URF =c(t) —c(t—1) (Egn. 19)

This ensures that the area of the URF is always equal to 1 (Figure 6).
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Figure 6. Calculation of Unit Response Function.

2.7 Unit Response Function Parameterization

Streamline URFs are archived for retrieval during the forecasting phase of the NPSAT. We found
that the shape of the URFs is similar to that of common probability distribution functions (pdfs) found in
the statistical literature and in statistical software. Both functions intrinsically integrate to a unit area.
We can therefore readily fit the empirically determined URFs to a library of pdf functions using existing
software. Pdfs are typically defined by two to three parameters and the function itself. The fitting
procedure used consists of a gradient based optimization method aiming at minimization of the error
between the empirical and fitted URF. Rather than archiving on the order of 10* — 10° bytes of data per
CDS (10° or more datapoints per each of 10° — 10° streamlines), this procedure reduces the archive to 3
to 4 numbers (2-3 parameters and one index to identify the function) per streamline or between 10°
and 10° bytes of data per CDS. This allows for efficient data storage and forward modeling in
applications to large groundwater regions, where the number of CDSs may range from 10°~10° or even
higher.

2.8 Summary of Construction Phase

Use of the URF approach computationally decouples the transport process from the nonpoint
source loading process. URFs can be computed a priori without knowledge of the actual nonpoint source
concentration history. We call this the NPSAT construction phase. The NPSAT construction phase
requires the following steps (Figure 7):

e Geospatial mapping of the individual land use parcels and their (non-transient, average)
recharge, of the CDSs (e.g., wells) and their (non-transient, average) discharge, and of other
boundary conditions

e Computation of a detailed three-dimensional steady-state groundwater velocity field using a
high-resolution numerical solution to Eqn. 7 with distributed recharge, groundwater pumping,
and groundwater discharge to streams
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e Geospatial mapping of the desired distribution of streamline exit points on the set of CDSs
e Backward computation of streamlines from their CDS exit points to the water table (source area)

e Computation of a URF as the one-dimensional solution of Eqn. 16 separately for each
streamline, given a unit input step function, and fitting a parametric function to this empirically
obtained URF at each streamline, a step that drastically reduces the data storage requirements.

The construction phase yields a geospatial database of the location of CDSs (wells, drains, springs,
stream reaches), an identification of associated streamlines, the parameters and a code identifying the
form-function of the URF for each streamline, and each streamline’s recharge and discharge (beginning

and end) location.

Computation of
detailed flow field

l

Generate particles
around the well screens

!

Backward Particle Store exit points

Tracking of streamlines
1D transport problem
based on unit input NPSAT

:

Fit Unit Response | Store fitting
Function parameters

Figure 7. Construction phase of the NPSAT.

2.9 Implementation Phase: Computing Breakthrough Curves at CDSs

In the implementation phase of the NPSAT, the BTC of a CDS is computed by convoluting each
streamline-specific unit response function with the actual, location-specific nonpoint source loading
function, then performing a flux-weighted integration of streamline-output concentrations at time t
over all streamlines exiting in a specific CDS (model prediction phase). Suppose that N, streamlines and
associated unit response functions URF = {URFl, URF,, ..., URFNS} were computed for the icpg™
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compliance discharge surface. The source loading functions associated with the URF are denoted as
L;; i € [1, Ng]. For each streamline, the concentration history is obtained by convolution:

t
BTG(®) = ) 1(t — d) - URF(d) (Eqn. 20)
a=o0

where d increases in the summation at time step intervals and t is the total runtime of the transport
model. Eqn. 20 is the numerical approximation of the general convolution operator between two

. t . .
functions f and g expressed as f x g = fo f(Qg(t — {)d{. After the calculation of the concentration

history at each streamline, the BTC of the CDS is computed from:

NS

1

BTCLCDs(t) = W1 + Wl + ot WN Z W] ) BTCJ(t) (Eqn. 21)
s=1

where w; is the weight that represents the amount of flow that corresponds to each streamline.

Unlike in watershed NPS modeling, where the CDS output of individual stream reaches or
tributaries is effectively integrated at the watershed outlet (Basso et al., 2010), the solute output at
individual groundwater well CDSs does not further mix among CDSs (similarly in the case where a large
number of low order stream reaches are considered separately). Instead, the BTCs provide the basis for
constructing time-dependent pollutant exceedance probability distribution functions (pdfs) across user-
specified specific population sets of CDSs (e.g., domestic wells, irrigation wells, drinking water wells,
stream reaches) within the modeling domain. This stochastic analysis is the final step in the NPSAT
process (Figure 8).

P

z z Time-dependent

Loading Histories NPSAT water quality pdf
Loading — [\_/ o

functions L

Time depended
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BTC

Figure 8. Simulation phase of the NPSAT.
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3. Approach to Generate Representative Groundwater
Velocity Distribution

One of the main assumptions of the proposed modeling approach is the aquifer flow field is
steady state. While this assumption might not be valid when a monthly or even seasonal temporal scale
for the analysis is used, it is justifiable with the rationale that the model will be used for prediction at the
annual temporal scale (see justification in subsection 7.2.1 Conceptual approach).

To choose a representative steady state flow field for the study area we used two criteria: 1) the
change of storage volume in the aquifer for the selected period should be as small as possible (i.e., the
volume of water that entered the groundwater aquifer must be equal to the losses) and 2) the various
stresses for the selected period have to correspond with the average stresses for the study area.

3.1 Steady-state Model for Tulare Lake Basin

For the TLB the analysis is based on the Central Valley Hydrologic Model (CVHM) (Faunt, 2009).
The CVHM is a transient state groundwater model, with a monthly time step, coupled with the FARM
process (Schmid et al., 2006) which is used as a water budget tool to estimate the groundwater stresses
due to agricultural practices (e.g., groundwater recharge and pumping, etc.). The CVHM simulates the
groundwater flow for the entire Central Valley aquifer for the years 1962 — 2003. According to CVHM
transient simulation, the storage in the aquifer decreases over the 41-year simulation period. Figure 9
illustrates the cumulative change in groundwater storage for four basins of the Central Valley. The violet
line corresponds to the TLB. It can be seen that, despite the general declining trend, there is a two-year
period (1995 — 1997) where the change in storage is rather negligible (see red oval Figure 9). The next
requirement is that the stresses need to be representative of the study area. Figure 10 shows the
simulated water budget from the CVHM. In particular it shows the agricultural pumping, the surface
water deliveries, the water delivery requirements for irrigation (groundwater plus surface water
deliveries), and the landscape recharge. Note also that three years, 1975, 1990, and 1998, have been
designated as typical, dry, and wet, respectively. Interestingly, for the years 1996 and 1997 the
simulated agricultural pumping, surface water deliveries, total delivery requirements, and the landscape
recharge are very close to those of the typical year (compare the ends of the arrows which point to the
amount of acre feet per year for the typical year 1975, and the year 1996 in Figure 10).
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Figure 9. Simulated cumulative annual changes in aquifer storage (reprinted with permission from: Faunt 2009,
p. 77, Figure B9.). Red circled area indicates the years chosen to represent steady-state stress conditions.

Prop. 50 Dairy Groundwater 31 © UC Davis — 8/09/2013



Time frame land-use maps were applied, from Chapter C
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Figure 10. Water budget of CVHM, where “delivery requirement” is the irrigation water requirement from both
groundwater and surface water sources. (Reprinted with permission from: Faunt 2009, p. 73, Figure B6.)

For the simulation we chose the water year spanning Oct. 1996 — Sep. 1997 as the stresses
remain nearly constant compared to the previous year.

However, the CVHM model is a transient state model with a monthly step, where the head
distribution, groundwater recharge, and groundwater pumping, vary over the year. To obtain a steady
head field we average the monthly rates for the water year 1996. The mean hydraulic head relative to
mean sea level is shown in Figure 11. The heads vary between -10 to 150 m (-33 to 492 ft). The head
field is one of the main drivers of the velocity field and how the contaminants are transported through
the aquifer. Therefore an accurate representation of head is very important. Figure 12 shows the
cumulative distribution of the discrepancy between the averaged head field and each monthly head
field of the year 1996. The discrepancy between the transient simulated head values and averaged head
field is less than 1 m for 80% of the head values and less than 2 m for 90%.

Prop. 50 Dairy Groundwater 32 © UC Davis — 8/09/2013



Steady State Head Distribution
for the Water Year 1996
[m from MSL]
- High : 263.2

—" | ow:-10375

Figure 11. Steady state head distribution for the water year 1996.
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3.2 Conceptual Background

Well Generation Algorithm

The CVHM uses finite difference approximation with discretization of one square mile.
Therefore various stresses such as groundwater recharge, groundwater pumping, and stream
interactions, are assigned to the center of each cell, and the assigned values correspond to aggregation
of all stresses located in each cell (e.g., the pumping rates of all the wells that are found in a square
mile). To compute BTCs for wells with typical characteristics (i.e., pumping rates, well depths and
screens that are closer to reality), in the refined model we developed an algorithm for generating wells
with representative pumping rates, screen length, and depth. In fact the Well Generation Algorithm
(WGA) is an automated way to distribute the well stresses back to individual wells. Since the location of
the real wells is unknown, we use the WGA for generating random locations and random pumping rates,
which satisfy the overall mass balance and honor the well characteristics, such as pumping rates, screen
depth, and length typical of the study area. The input data for the WGA are the empirical distribution
functions (ecdfs), which describe the well pumping rates, screen lengths and depths. The ecdfs used in
this report are illustrated in Figure 13, Figure 14, and Figure 15.
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Figure 13. Empirical cumulative distribution function of maximum well pumping rate.
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Figure 14. Empirical cumulative distribution function of well depth [m] (distance between water table and
bottom of the well screen).

The ecdf of pumping rates is shown in Figure 13. Note that the data correspond to the maximum
capacity of each well in the sample and not the actual pumping rate, which is unknown. In addition, note
that most of the wells, if they operate at their maximum design capacity, they do so approximately 5
months per year (dry season) while during the remaining months, they either do not operate or operate
at reduced rates. Based on expert opinion, it was suggested to sample from a subset of the full
distribution, excluding the extremely large rates (>0.9) or negligible rates (<0.05). Note also that, in the

simulation, we are interested in the yearly average rates, therefore the sampled rates were further
reduced to correspond with yearly rates.
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Figure 15. Correlation between well depth and screen length.

The steps of the WGA to generate locations and pumping rates are outlined as follows and explained
in more detail below:

l. Choose a cell with assigned pumping rate

1. Generate a well location
2. Generate pumping rate and keep track of cumulative pumping
3. If cumulative pumping is less than the cell assigned pumping rate, repeat steps 1 and 2
4. Else, subtract the difference from the nearest cell, and proceed to the next cell

. Generate random depth and screen length based on the distribution

[l If the depth is greater than 100 m assign the depth to a well with large production rate

V. If the depth is less than 100 m assign the depth to any well

V.  Check that there is 3 m (10 ft) of screen for every 100 gpm in coarse material. If not repeat steps

[-V.

According to the pseudocode for each cell (square mile) of the CVHM discretization with an assigned
pumping rate, we randomly generate wells within the cell using the formula x = x™" + r(x™* —
X™") which generates uniformly distributed numbers within the specified limits (e.g., cell extent) where
X = [x, y] are the coordinates of the generated well and r is a vector of two random numbers from the
uniform distribution between 0 and 1. In addition, we specified a minimum threshold distance equal to
300 m, so that the wells are not in close proximity. The generation of the wells is a sequential process
and each new well is accepted only if the distance with the closest existing well is greater than the
threshold. To assign pumping rates, we sample randomly from a subset of the empirical cumulative
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distribution function. When the cumulative pumping rate of the generated wells per cell exceeds the
rate of the cell, which is specified by the CVHM, we proceed to the next cell. However, to maintain the
water budget and at the same time to honor the pumping ecdf, the difference between the total
cumulative pumping rate and the specified CVHM rate, is subtracted from the nearest cell to the last
generated well in the current cell. Based on the above approach the number of wells per cell (i.e., wells
per square mile) is dictated first by the cell pumping rate, (e.g., the higher the rate the more wells will be
generated) and secondly by the shape of the ecdf.

In total, the algorithm generated 5,486 wells within the TLB study area. It can be seen (Figure 16)
that the average number of wells per square mile is 4 while 80% of the simulated wells are found at a
density less than or equal to 5 wells per square mile. This is also in agreement with reality, according to
expert opinions. The simulated well locations are illustrated in Figure 17. The regional spatial
distribution of the simulated wells is dictated by the parent model, here CVHM, and the CVHM pumping
fluxes for the representative period chosen for the steady-state flow field (here: 1996). The WGA
introduces an artificial variability at the scale of and within the CVHM grid cells. Due to the much finer
discretization, the spatial local distribution of the wells obtained from WGA is therefore different and
more detailed than with CVHM.

ecdf
Frequency

4 6 8 10 12 14 16 18
Number of simulated wells per square mile Number of simulated wells per square mile

Figure 16. Left) Empirical cumulative distribution function of the number of wells per square mile. Right)
histogram of the number of simulated wells per square mile.
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Figure 17. Locations and pumping rates of simulated wells in the TLB study area.

The distribution of pumping wells in Figure 85 reflects long-term average agricultural and urban
water extractions, as represented by the year 1996 water budget (see discussion above and Figure 78).
Under “normal year” conditions, surface water supplies along the easternmost portion of the TLB are
sufficient to supply most irrigation water. Hence, most pumping wells in the easternmost part of the TLB
are for urban uses (e.g., City of Fresno, City of Visalia, City of Porterville).

The distribution of pumping rates of the simulated wells is illustrated in Figure 18. Since we used
a subset of the original distribution, the simulated distribution does not match the data, yet the median
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value is approximately equal to 800 gpm, assuming a 5-month pumping period, which is a reasonable
assumption for the particular study area.
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assuming pumping 5 months per year

Figure 18. Empirical cumulative distribution function of simulated pumping rates.

After the generation of well locations and pumping rates, we assigned depth and screen lengths.
Similarly the ecdf of well depths (Figure 14) and the correlation between screen lengths with depth
(Figure 15) are used to generate random values. However special treatment is required to avoid
assigning very large pumping rates to shallow wells. To do so we imposed a to sample from the upper
half of the depth distribution when the pumping rate exceeds the median pumping rate of the pumping
rate ecdf. However, when the rate is less than the median we use the full range of the distribution. In
addition to pumping rate generation, special treatment is required for the screen length generation.
Typically the shallow wells have shorter screen lengths than the deep wells. Figure 15 shows the depth
of the well against the screen lengths. Ideally, an empirical bivariate probability density function is
computed; however, this requires a large amount of data. Here we choose a two-step approach where,
for each well, we first generate the depth and then the screen length. During the screen length
generation, instead of sampling from the full distribution, we sample from a narrow range of the
distribution. For example, suppose that d is the depth generated by sampling the depth distribution
(Figure 14). To assign screen lengths we identify the samples with depth within the range [r — d,r + d];
hence, we use only a limited number of samples instead of the full distribution and construct a local
ecdf, which describes the distribution of the well screen lengths in the vicinity of the selected depth d
(Figure 19). The range r depends on the density of sample points (wells) around d and it is determined
in an automated fashion. For each well, the algorithm starts with a very small value for the range r and
increases the range until a sufficient number of sample points are found to construct a local ecdf.
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Based on the depth and screen length distributions we assigned random well depths and screen
lengths to the simulated wells that were generated in the previous step, according to their pumping
rates. In order to generate an unbiased depth-screen length distribution, first we split the simulated
wells into two groups. One group includes all the wells with simulated pumping rates greater than the
median (i.e., 800 gpm), while the second group actually contains all the wells. Then we generate random
depth d and random screen length based on the ecdfs. If the generated depth d is greater than 100 m
(328 ft) then the well is designated as deep and the depth is assigned randomly to one of the wells that
belongs to the first subgroup (of large production wells) and the well is removed from both sets. If the
generated depth is less than 100 m then the pair of depth-screen length is assigned arbitrarily to one of
the wells of the second group which contains all the wells. It can be seen that it is possible for wells with
relatively small pumping rates to have large screen lengths, yet the suggested approach does not allow
large wells to have small screen lengths. At the same time, since all the distributions are sampled
independently, we avoid introducing bias. This becomes apparent by comparing Figure 14, which shows
the ecdf of depths based on the real data and Figure 20 that shows the ecdf of the simulated well
depths. The correlation between well depth and screen length is illustrated in Figure 21, which is very
similar to the correlation of the real data (Figure 15). Last, we check if the material between the screen
lengths can support the assigned pumping rate. We utilized an empirical formula where, for each 100
gpm we require at least 3 m (10 ft) of coarse material (e.g., K> 10 m/day (33 ft/day)). If the well does not
meet this restriction, we repeat the depth and screen length generation.
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Figure 20. Empirical cumulative distribution function of Simulated well depth (distance between simulated
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Figure 21. Correlation between simulated well depths and screen lengths.
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3.3 Groundwater and Transport Simulation

After the generation of wells, all the additional stresses, which were defined as monthly rates,
such as groundwater recharge stream leakage interactions, were averaged to obtain representative
yearly rates. The hydraulic conductivity values and the ratios between horizontal and vertical
conductivities were obtained from the input files of CVHM model.

To simulate the steady state flow field that corresponds to the water year 1996, we use finite
element discretization, where the discretization varies from few meters ~10 m (33 ft) near wells to
several hundred meters. Figure 22 illustrates an example of the fine discretization that was used in the
steady state solution. The red cells correspond to the cells of the CVHM (i.e., each cell is 2.6 km (1
sq.mi)). For the vertical discretization we used 25 layers as opposed to the 10 layers used in CVHM.
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i

Figure 22. Discretization based on finite elements. The red lines correspond to the cells of the CVHM model. The
dense black areas indicate the highly detailed discretization around the wells.

To obtain a steady state solution at this level of discretization, we employed the simplistic
domain decomposition method presented above. According to the method, the domain was first divided
into overlapping subdomains. Figure 24 shows the division of the study area into overlapping
subdomains. In total, the subdomain was divided into 97 overlapping subdomains. The dimension of
each subdomain was approximately 20 x 20 km., while the width of the overlapping zone was constant
and equal to 2 km.
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Figure 23. Histogram of degrees of freedom for the simulated subdomains.

The degrees of freedom for each subdomain vary from 3.1x10° to 14.8 x10° (Figure 23). The
total number degrees of freedom is 39 x10°. Note that in our approach the meshes of adjacent
subdomains were not conforming (i.e., within the overlapping zone the nodes of two subdomains do not
coincide). According to the simplistic domain decomposition method, each subdomain was solved
independently. The boundary conditions for the inner boundaries of each subdomain were interpolated
from the coarse solution of CVHM. To obtain a divergent free velocity field we used the proposed
(section 7.2.2) weighted averaging scheme.
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Figure 24. Domain decomposition of study area into overlapping subdomains. The strips correspond to the
overlapping zone.
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Figure 25. lllustration of weighting scheme between adjacent subdomains.

The hydraulic heads for the nodes within the non-overlapping area were obtained directly from
the head solution of each subdomain. For the nodes in the overlapping zones, first, we computed the
weights associated with each subdomain and then the node heads were calculated as the weighted
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average. Figure 25a illustrates the nodes of one of the subdomains. To keep the figure simple the
triangularization has been removed from the figure. The blue dots in Figure 25a correspond to the nodes
within the non-overlapping area. The nodes with red correspond to the overlapping zone between 2
subdomains and the green to the overlapping -zone between 4 subdomains. In the other two panels,
Figure 25b and Figure 25c, the height of each node corresponds to the weight associated with each
subdomain. It can be seen that the weight of the main subdomain (blue dots) is zero at the boundaries
and increases linearly. Similarly, the weights of the adjacent subdomains are zero at their boundaries
and increase linearly as well (see red and green dots). The final head field is the weighted average of the
subdomain head distribution. For example, the heads of the main subdomain (blue dots) of Figure 25 at
the boundaries will be given zero weight, since the error is expected to be large due to the interpolated
(from the coarse solution) boundary constraints. As we move towards to the center of the main
subdomain (blue dots) the velocity obtained from the main subdomain will be given higher weight, while
the weight from the adjacent subdomains decreases. Hence, the overlapping zone creates a smooth
transition zone between subdomains

The head and subsequently the velocity field were used for particle tracking. According to the
methodology, for each well we released 100 particles, uniformly distributed, around the well screen and
tracked backwards until they exit the aquifer. Since the number of wells is 5,486, the simulated
streamlines equal to 548,600 (Figure 26).
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Figure 26. Computed streamlines based on the fine simulation model.

Then, for each streamline the 1D ADE transport problem was solved to obtain unit response
functions. Here we used the analytical solution of 1D ADE where the longitudinal dispersivity was a
function of streamline length and the velocity was set equal to the advective velocity. Note that, during
the 1D transport problem, we assumed unit input loading to obtain a unit response function for each
streamline, which was subsequently stored into a GIS database and was used for predictions based on
different loading scenarios. Figure 27 illustrates the computed URFs for two of the simulated wells. We
choose one shallow and one deep well to point out the different responses one should expect. It can be
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seen that the travel time distributions for shallow wells are shorter between few years and few decades,
as opposed to deep wells where the range of travel time distribution spans from several decades to
centuries. In addition, the shape of the URF for shallow wells is spiky, indicating that shallow wells
exhibit greater concentrations compared to deep wells.
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Figure 27. Unit Response Functions.
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4. NPSAT Implementation Based on Coarse Model

In addition to the highly detailed model, we applied the NPSAT using the CVHM coarse
approximation. Similar to the detailed simulation, to obtain an average steady state flow field for the
water year 1996, we averaged the monthly flow fields which were obtained from the output of CVHM.
Based on analytical particle tracking (Pollock, 1994), we perform backward particle tracking until the
particles exit from the water table. The particle starting points are identical to those used in the detailed
model. Yet, due to coarse approximation, there is no cone of depression around each simulated well,
resulting in an unrealistic shape of streamlines around the wells, which can be seen locally (Figure 30).
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Figure 28. Streamlines based on coarse model and analytical particle tracking.

The streamlines based on the coarse approximation are shown in Figure 28. It can be seen that,
in general, the streamlines follow the same pattern as in the highly detailed simulation. In both cases
the streamlines cover the study area and in both cases there are fewer streamlines in the basins of
Tulare Lake and Westside compared to the other basins. This can be attributed to the fact that there are
fewer wells, but also that the particle travel distance is shorter in some cases.

Although the average shape of streamlines seems similar in both cases, the statistics of the
streamlines reveal significant differences (Figure 97). One of the major differences is the distribution of
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the streamline length. In the coarse approximation the logarithm of streamline length appears normally
distributed with a mean value of about 15,000 m (15 km), while for the highly detailed simulation, the
distribution exhibits two peaks, one close to 6,000 m (6 km) and one close to a few hundred meters. The
significant difference in streamline length is reflected also in the age distributions. While the logarithm
of age appears normally distributed, the mean value for the detailed model is approximately 1.8 (~65
years), but it is 2.1 (120 years) for the coarse model. In addition there is a significant percentage of
streamlines in the detailed model with travel time less than a year.
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Figure 29. Comparison of the distribution of streamline length [m] and age [years] between the two simulation
models. Alog of 0, 1, 2, 3, and 4 corresponds to 1, 10, 100, 1000, and 10,000 units (m or years), respectively.

One of the main reasons for these differences is the fact that, in the highly detailed simulation,
the hydraulic head field was depressed around the wells, due to fine discretization. Note that in coarse
simulation the local cone of depression around the simulated wells was absent. Although in both models
the particles originated from the exact same positions, in the fine model the particles are actually closer
to the water table, due to the cone of depression, which was absent in the coarse mode. Therefore for
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the fine model the particle’s travel time to exit the aquifer was shorter compared to the coarse model,
as well as the length of their streamline. In addition, it was not unusual that part of the screen length
was above the water table and the particles above the water table in the detailed model were ignored.
To illustrate the difference we have plotted the streamlines for one of the wells (Figure 30 top panel)
and zoomed around the well (bottom panels. The blue lines correspond to the coarse model and the red
to the highly detailed. The streamlines shown here were selected as representative. Indeed, in most
cases the streamlines based on the coarse model where longer and narrower compared to the detailed
model, due mainly to the absence of a cone of depression around the well.

| | | 1 | | 1
1.02 1.03 1.04 1.05 1.06 1.07 1.08

X x 10°
x 10°
1.6647 1.6647

1.6647| _—

1.6646 |

1.6647
1.6646 |

> 16646 1.6646 | —

AR ————

1.6645 1.6645| - —
16645f§/ 1.6645 I

1.0128 1.0129 1.013 1.0131 1.0132 10128 1.0129 1.013 1.0131 1.0132

X x 10° X x 10°

Figure 30. Comparison between streamlines computed with the detailed and coarse model. Red streamlines
correspond to detailed model and blue to coarse model. Top panel shows the overall streamline shapes of the
100 streamlines for a particular well. The bottom panels show the orbits of particles around the wells. Due to
the absence of a cone of depression on the coarse model (blue lines) the streamlines are actually straight lines.
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5. Results

5.1 Nitrogen Loading Scenarios

The computed Unit Response Functions (URFs) can be rapidly convoluted with alternative
loading scenarios to calculate real breakthrough curves for each well. In this report we examined the
impact of four alternative nitrogen loading scenarios. A detailed description of the development of N
loading scenarios is discussed in Section 1.8 of Technical Report 2 (Viers et al., 2012). Briefly, the four
scenarios represent different management of excess manure N (nitrogen) exported from dairies after
1980: In Scenario A, exported manure N either leaves the study area or is incorporated into nutrient
management on non-dairy crops such the typical amount of N applied to crops does not change. In
scenario B (by study area) and C (by study area), half and all of exported manure, respectively, is applied
to non-dairy cropland across the study area as an amendment in addition to typically applied fertilizer N
resulting in higher groundwater nitrate loading. In scenario D, all manure N is applied on manured crops
within dairies resulting in very high nitrate loading to groundwater on dairies, but elsewhere identical to
Scenario A. The approach taken to modeling manure applications is also used to model food processing
waste application, and application of biosolids and WWTP effluent nitrogen, whether it is to cropland or
directly into recharge facilities.

The output of the N loading algorithm developed by Viers et al. (2012) is four alternative
scenarios of the N leaching into into the groundwater table. The leaching rates are given in kg/ha for 8
different years (1945, 1960, 1975, 1990, 2005, 2020, 2035, and 2050). For the simulation purposes we
assumed that the recharge is constant over the 106 years of simulation, while the nitrate leaching rates
vary linearly between these yearly values. Groundwater water recharge is a very important parameter,
not only due to its influence on the flow field, but also because it determines the final leaching
concentration rates. The loading histories need to be converted in units kg/m? (i.e., concentration).
Therefore, prior to convolution of loading functions with the URF, we divided the N rates with the
recharge. Figure 31 shows the cumulative distribution of loading rates assigned to each streamline. The
left panels shows the N loading leaching rates in kg/ha (e.g., as they were computed by the N loading
algorithm), while the right panels show the actual concentration that is assigned as input to each
streamline. Note that this plot takes into account the loading rates for each streamline. Therefore, when
multiple streamlines originate from the same land parcel, the corresponding rate is counted multiple
times. During the prediction phase this does not affect the outcome as the final breakthrough curve is
the weighted average of the streamline BTC (eqn. 21)

Similarly, in Figure 32 we plotted the exceedance probabilities of half the MCL, the MCL, and
twice the MCL, that is the probability that wells exceed half the MCL, the MCL, or twice the MCL. Note
that these three concentration limits will serve as reference values in the prediction phase. It can be
seen that, in year 1945, approximately 40% of streamlines (i.e., 40% of the whole well source area) were
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associated with land parcels that leach with rates of half of the MCL, while 20% and 13% exceed the
MCL and twice the MCL, respectively. Having these conditions as starting points, loading increases
somewhat linearly until the year 2005, where 83%, 68% and 55% of the streamlines are associated with
land parcels that exceed the 22.5 mg/L, 45mg/L and 90 mg/L, respectively. For future predictions, four
different loading scenarios are considered (see details in Section 1.8 of Technical Report 2, Viers et al.,
2012). Outside of dairies, there is no difference in N loading to groundwater between “Scenario A” and
“Scenario D” as manure exports either don’t affect typical N application or there are no manure exports
to areas outside dairies. Post-1990, these two scenarios represent significantly less loading than
“scenario B (study area)” and “scenario C (study area)”, which apply half and all exported manure to
cropland, respectively, in addition to typical fertilizer applications. No manure exports occur in 1975 and
prior to 1975 in any of these scenarios. Hence the loading distribution across the landscape is identical
between the scenarios for 1945 — 1975.
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Figure 31. Cumulative probability distribution of N loading per year assigned to each streamline. The left panels
correspond to N loading with units kg/ha -output of N loading algorithm Technical Report 2 (Viers et al., 2012),
while the right panels correspond to the actual loading of N as nitrate (45 mg/L drinking water limit), which is
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used as input to NPSAT simulation model. All scenarios here are “by study area” and are explained in Section 1.8
of Technical Report 2 (Viers et al., 2012).
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Figure 32. Exceedance probabilities of N loading rates as nitrate. All scenarios used here distribute excess
nitrogen “by study area” and are explained in Section 1.8 of Technical Report 2 (Viers et al., 2012).

The above loading functions were computed based on the detailed simulation model. Yet, when
the coarse simulation model is used to convert the rates to concentrations, the figures change
significantly. Figure 33 illustrates the cumulative distribution functions of N loading over time based on
the coarse model. While the output of the N loading algorithm is identical in both cases (compare left
panels in both figures) the loading distribution is primarily a function of the starting points of
streamlines (i.e., the point where the particles exit the aquifer during backward particle tracking). The
four scenarios exhibit similar behavior as described previously (i.e., in scenario A and D the leaching
rates are reduced after 1990, in scenario B [by study area] leaching rates remain nearly constant, and in
scenario C [by study area] there is an increase in loading), but the magnitude of the overall loading is
less compared to the detailed scenario. The main reason is that, in coarse simulation, the particles were
likely to connect wells to the higher recharge areas, therefore, during the conversion from mass kg/ha to
mg/L the concentrations appear to be smaller. The main reason for that can be attributed to the nature
of the particle tracking algorithm that was used in each case (e.g., analytical particle tracking for the
coarse case and numerical particle tracking for the detailed simulation.) Furthermore, the streams for
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the coarse model are simulated by one square mile cells, while in detailed simulation the streams were
assumed line sources with width approximately 50 m. It was found that, in the coarse model, a larger
number of streamlines originate from cells associated with streams. Finally, the exceedance probabilities
of the three reference concentration limits are shown in Figure 34. By comparing Figure 32 and Figure

34 we see that the N leaching into the groundwater concentration rates for the coarse model are 5% to
10% less than those of the fine model.
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distribute excess nitrogen “by study area” (see Section 1.8 of Technical Report 2, Viers et al., 2012).
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distribute excess nitrogen “by study area” (see Section 1.8 of Technical Report 2, Viers et al., 2012).

5.2 Model Validation

Prior to using the model for future predictions we perform a validation step, where the outcome
of the model is compared against real data that have been gathered from various sources (section 4.4).
The rationale for the data gathering and processing is explained in detail in section 4.4; however, for
completeness of the section we summarize the main steps. In the well database there is a large number
of samples; however, these samples are not uniformly distributed, neither spatially nor temporally. To
alleviate both non uniformities the study area was divided into a number of equal area cells (Error!
Reference source not found.). Then, starting with 1950 and through 2010, for each cell, we compute the
median of the annual well concentration means on a decadal basis. At the end of this process we obtain
one representative concentration value for each cell for each decade. To calculate a de-clustered
decadal average concentration for a particular region we compute the mean and the confidence interval
of the mean of the decadal medians of the cells located in that region after they are log transformed.
The back-transformed decadal means for the three regions of the TLB (Error! Reference source not
found.) are shown in Figure 35 and Figure 36, with the 95% confidence interval of the mean.
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Figure 35. Decadal means of nitrate concentration for the three regions based on measured data. The solid line
represents the mean and the dashed line the confidence interval.

Prop. 50 Dairy Groundwater 61 © UC Davis — 8/09/2013



Exceedance probabilily

BASINS

, 08
06

04 astemmnmnn et

P(c = 9) mg/

0.2 fevnmnnae®

e
-
CLTTTT ey

50s 60s 70s 80s 90s O00s

e

0.8
06
0.4

P(c > 22.5) mg/L

0.2 et _‘_“_,..-"

50s 60s 70s 80s 90s 00s

0.8
0.6
0.4
02

P(c = 45) mg/L

50s 60s 70s 80s 90s 00s

EAST FANS
1

0.8

06 -,..---"""".-'--""-'--.-"

0.4
0.2

50s 60s 70s 80s 90s 00s

0.8
0.6
0.4
02

.....

B
e

———
e i

50s 60s 70s 80s 90s 00s

0.8
06
0.4

50s 60s 70s 80s

90s 00s

WEST FANS
1

0.8

S
- )

0.6
04
0.2

50s 60s 70s 80s 90s 00s

0.8
06

50s 60s 70s 80s 90s 00s

08
06

0.4

0 2 -------- ”,OO -y ~ “.’".' “g-n

50s 60s 70s 80s 90s 00s
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mean exceedance probability within each region and the dashed line the 95% confidence interval.

Next, the measured data are compared against the simulated trends, based on the two

intervals of the means were calculated as described previously.

modeling approaches, the fine and coarse model. Similar to the measured data, the simulated results
were grouped into the same equal area cells and the de-clustered decadal means and confidence
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means. Comparison of mean and 95% confidence interval between measured data and model predictions.

First we compare the de-clustered mean concentration data against the model responses
(Figure 37). The solid lines represent the de-clustered, back-transformed mean of log transformed
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decadal medians of annual well means calculated per equal area cell and the dashed line represents the
confidence intervals. In general, both models fail to follow the early decades 1950-1980, with an
exception for the Basin region, yet this is due to the very low measured concentrations. Note that, in all
regions, the responses of both models are practically identical until the 1970s and both calculate very
low concentrations at the beginning of the simulation. This is due to the fact that the groundwater
nitrate loading model does not account for nitrate loading from any sources prior to 1945 —
groundwater is assumed to be “clean” in 1945. The model also neglects any background nitrate
concentration, which is typically on the order of ¥4 mg/L nitrate or less. A second reason is that the
groundwater model does not include shallow domestic wells with very low pumping rates, which are
often affected before the larger production wells with longer screens, simulated here, are affected by
higher nitrate concentrations. For the Basin region, the coarse model fits better to the data compared to
the fine model. In the Basin region, the fine model predicts a more rapid increase in nitrate
concentrations than the measured data suggest. For the Eastside Fans region, early nitrate data are
higher than predicted by either model. For the 1990s and 2000s, the fine model, predicting a more rapid
increase than the coarse model, comes relatively close to measured de-clustered mean. The coarse
model predicts, on average, very low concentrations, less than 10 mg/I, while the upper limit of fine
model is approximately identical with the lower limit of the data for the last decade. Note also that the
slope for the last decade is somewhat similar to the slope suggested by the fine model. For the Westside
Fans region, there is similar discrepancy as in the Eastside Fans region. The fine model predicts a slightly
upward trend for the 1980s, which becomes more apparent during the 1990s, then significantly
overpredicts the observed average low nitrate concentration measured during last decade (2000-2010).
The coarse model underpredicts even further the higher average nitrate concentrations observed during
the 1980s in the Westside Fans region, but appears to better predict the more recently observed low
average nitrate concentrations. We caution that for the Westside Fans, the measured decadal mean
values are based on much fewer measured data than for the other regions, with the source of data and
the associated types of wells measured varying significantly over decades (see discussion in Section 5).
Overall, it appears that the response of the fine model is closer to what is measured for the Eastside
Fans than the coarse model. In contrast, the coarse model, showing a slower rise in nitrate
concentrations than the fine model, due to the above discussed inherent conceptual model differences,
compared better to the measured average nitrate concentrations in the Basin and Westside Fans
regions. Neither model takes into account denitrification, which may be a significant process within the
Corcoran Clay separating the upper from the lower aquifer system in the Basin and Westside Fans
region. Future modeling efforts may be performed to accommodate denitrification in the Corcoran Clay
and other portions of the aquifer system, for which denitrification rates would have to be determined.
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Figure 38. Comparison of decadal trends of exceedance probability of 9 mg/L, between measured data and

model predictions.
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Exceedance Probability > 22.5 mg/L
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Exceedance Probability > 45 mg/L
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Figure 40. Comparison of decadal trends of exceedance probability of 45 mg/L, between measured data and
model predictions.
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Another way to study the decadal trends is to examine the exceedance probabilities for a given
concentration. To this end we computed the exceedance probabilities for concentration levels 9, 22.5
and 45 mg/L. Note that the drinking water limit is 45 mg/L. Figure 38 illustrates the mean decadal
exceedance probabilities of 9 mg/L and the confidence intervals based on the measured data and the
responses of the two models per region. Interestingly, for the Basin region the fine and the coarse
models follow the upper and lower limit of confidence intervals of the real data for the 70s and 80s, but
they fail to reproduce the abrupt change that occurs between 80s and 90s. For the Eastside Fans region
both models underestimate their predictions during the first decades, while the response of the fine
model are somewhat closer the measured data. Both models behave in a similar manner for the
Westside Fans region predicting a continuous increase, yet based on the data there is a significant
decreasing trend from the 80s onwards, which is not captured by either model, but maybe due to a
sampling bias in the measured data. The response of the models for the exceedance probabilities of 22.5
mg/L (Figure 39) is very similar to the exceedance probabilities of 9 mg/L. Both models fail to capture
the decreasing trends for the Westside Fans and Basins regions, while the predictions of the fine model
are closer to real data for the Eastside Fans region.

Interestingly, the models are showing better fit for the exceedance probabilities of the MCL (45
mg/L) (Figure 40). In antithesis with the previous figures, the trends in all three regions show a general
increasing trend. For the Westside Fans and Eastside Fans regions, both models respond similarly,
although the coarse model seems to fit slightly better with the real data. For the Basin region, both
models predict a significant upward trend after the 70s; however, based on the real data, the upward
trend only occurs two decades later.

In conclusion, the measured nonpoint source pollution system behaves in certain cases very
different than what would be expected based on the model. In every case, both models failed to
reproduce any downward trend. The fine model predictions seem to fit to the measured data better for
the last decade, especially for the Eastside Fans region. Comparison between the models confirms, in
certain cases, our expectation that the coarse model tends to underestimate, while the fine model tends
to overestimate the actual concentration levels, although there are certain cases where this general
“rule” is violated. Accounting for denitrification, with independently measured denitrification rates
would provide a tool to improve the average model predictions when compared to average measured
data.

5.3 NPSAT Modeling Predictions

The N loading functions for each scenario were convoluted with the URFs, a process that
involves only analytical calculations; hence, we were able to calculate each alternative scenario A, B (by
study area), C (by study area), and D (for detailed description of these scenarios, see Section 1.8 of
Technical Report 2; Viers et al., 2012). The BTC for each well are shown in Figure 41. The thin colored
lines represent the well BTCs, the red lines show the drinking water limit, and the black thick lines depict
the exceedance probabilities. It can be seen that there is a significant number of wells with very fast
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BTCs (i.e., shallow wells with relatively small screen lengths), and also a significant number of wells that
exhibit very slow responses (e.g., deep wells).
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Figure 41. Breakthrough curves based on model simulation for each well for the four alternative (by study area)
scenarios (thin colored lines). The black thick lines correspond to exceedance probabilities and the red lines

show the drinking water limit (45 m/L). Scenario details are provided in Section 1.8 of Technical Report 2 (Viers
et al., 2012).

Although the simulated BTCs are temporally uniformly distributed, their spatial distribution is
non-uniform. Therefore we utilized a similar method as in the previous section (4.7.5.2) to process the
results, where the TLB area was split into six basins (Kern, Kings, Tule, Tulare Lake, Kaweah, and
Westside). Each basin was divided into equal area cells, and, according to the previous method, we
computed the means and confidence intervals for each basin. Figure 42 shows the comparison between
the fine model and the coarse model using the loading functions of scenario D. It can be seen that in all
basins the fine model (red lines) predicts higher concentrations compared to coarse model (blue lines).
Note also that the uncertainty is rather high in most basins (e.g., Kaweah, Tule), and in particular for the
future predictions. In addition, the two models exhibit large discrepancies, yet a few safe conclusions
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can be drawn. For example, both models predict that for the Kings and Kern basins the concentrations
will remain below the drinking water limit. On the other hand, both models predict high concentrations
for the Kaweah basin. By the year 2050 the mean concentration, based on the fine model, is expected to
be twice the MCL, and the coarse model estimates concentrations close to MCL with but significant
variance in its estimation). This may be attributed to the fact that Kaweah basin contains the majority of
dairies. As far as the remaining three basins are concerned, the models exhibit large discrepancies. For
example, the coarse model predicts that the concentration in Tule basin will not exceed 10 mg/L by
2050 (the upper confidence limit), while the fine model predicts that the concentration will not exceed,
but will be very close to the MCL, yet, this figure is associated with large variance. Note the upper
confidence limit is approximately twice the MCL. For the basins on the west side, the coarse model
predicts a similar upward trend, where the mean concentration by the year 2050 is expected to be 20
mg/L, approximately. On the other hand, the fine model predicts significantly higher concentrations.
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Figure 42. Comparison between coarse model and fine model based on scenario D.
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Figure 43. Comparison between scenario A and C based on the fine model predictions.

While the models may not accurately capture the actual responses they can still be useful tools
to evaluate the impact of alternative scenarios. Figure 43 plots the predictions of the fine model based
on the loading scenarios A and C. Scenario C is considered here the worst scenario. It can be seen that
the impact of scenario C for the basins of Kern, Tulare Lake, and Kings is rather negligible. In antithesis,
the basins of Kaweah, Tule, and West side are significantly affected.

Last, we compute the exceedance probabilities for each basin, based the fine and the coarse
models for three given limits (e.g., 22.5 mg/L (half the MCL), 45 mg/L (MCL), and 90 mg/L (twice the
MCL)). Figure 44 shows the exceedance probabilities based on the fine model using scenario D, while
Figure 45 shows the exceedance probabilities based on the coarse model and the same scenario D. By
comparing the two figures we observe similar discrepancy between the two models. The fine model
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tends to predict higher exceedance probabilities compared to the exceedance probabilities of the coarse
model.
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Figure 45. Exceedance probabilities for 22.5, 45, and 90 mg/L based on the coarse model.

For example, by the year 2050, the exceedance probability of the drinking water limit for the
basin of Kern, based on the fine model, is approximately 30%, while based on the coarse model the
same probability is ~42%. Similarly for the other regions, the two models exhibit a discrepancy on the
order of 10% to 20%.

In conclusion, it is apparent that there is a strong disagreement between the model predictions,
yet the two models are consistent as far as the impact of the alternative scenarios is concerned. In
addition, they are consistent regarding the trends for each basin. The basin of Kaweah exhibits the
highest concentration levels among the six basins (e.g., 80% and 60% of wells exceed the drinking water
limit based on fine model and coarse model, respectively). For the Kern and Kings basins the two models
converge that the concentration and exceedance probabilities will remain low, while a notable increase
is expected for the west basins.
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The difference between the two models indicates that two similar models (e.g., both are based
on the CVHM model) may exhibit very different results. As shown in the previous paragraph, the
streamline length distributions were quite different between the two models, with the coarse model
having longer streamlines with older ages. Therefore, it is not surprising that the coarse model predicts
lower concentrations. Although the fine model captures more precisely the local variability of the head
field, one of the main drawbacks of the fine model is that it fails to maintain the general water balance
due to the simplistic decomposition method. For example 85% of the groundwater recharge is diffuse
recharge and the remaining corresponds to stream recharge. Yet the number of streamlines that
originate from the streams, based the fine model, is approximately 6.5%. For the coarse model it
appears that 20% of the streamlines originate from the streams. Therefore, these two models can be
seen as the two extremes, where the fine model overestimates nitrate contamination and the coarse
model tends to underestimate.

Overall the simulation of nonpoint source pollution for large groundwater basins is a subject
that requires further research and deeper understanding of the transport mechanisms. The fine model
approach, with adjustments to the simplified domain decomposition method and after accounting for
denitrification, is the most promising approach. The coarse model approach, while apparently better in
predicting average nitrate concentrations in some instances than the fine model, when comparing to
actual average regional data, has been shown to have intrinsic weakness in the computation of travel
paths that the fine model is able to address better. As a result, the coarse model appears to make better
predictions especially in areas, where in fact denitrification is a significant controlling factor. Further
improvements to the fine model approach are needed, and independently measured denitrification
rates in the TLB region, to improve on the current modeling capability.
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6. Conclusions

e Travel times in the unsaturated zone range from less than one year to decades, depending
mostly on depth to groundwater, and on recharge rates under agricultural operations.

e We developed a new groundwater modeling tool that can be used in conjunction with
estimated nitrate loading maps for past, current, and future conditions (Viers et al., 2012) to
simulate the development of nitrate exceedance probabilities in sub-regional aquifer systems of
interest. The model is consistent with measured nitrate concentration distributions and suggests
significant increases in nitrate exceedance rates over the coming years.
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