Agronomy of small grain production in California's North Coast region

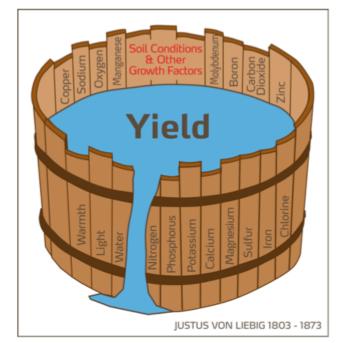
Mark Lundy

UCCE Agronomy Advisor

Colusa-Sutter-Yuba Counties

General agronomic concepts

Pre-season considerations


In-season considerations

Resources

Liebig's law of the minimum

Justus von Liebig's "Law of the Minimum" published in 1873

"If one growth factor/nutrient is deficient, plant growth is limited, even if all other vital factors/nutrients are adequate...plant growth is improved by increasing the supply of the deficient factor/nutrient"

http://kemnovation.com/crop-nutrition/

Improper Crop Poor soil

Possible

production

Insects

moisture

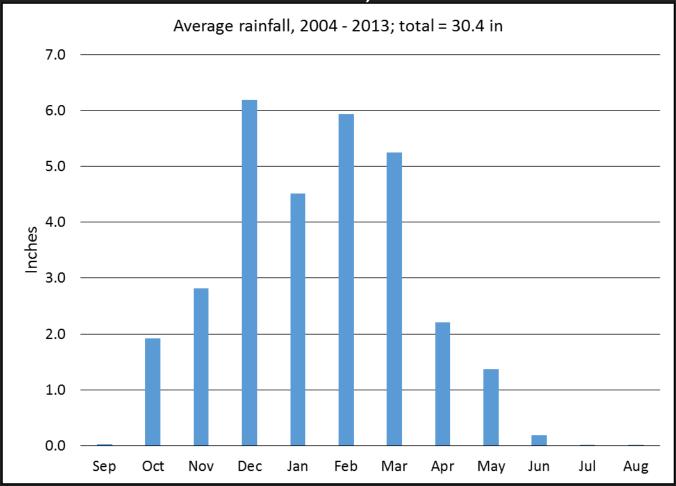
Figure 1-10 Leibig's Law of the Minimum states that the most limiting factor determines yield potential. Producers should minimize or eliminate the most limiting factor first, then the second most limiting factor, and so forth. Only in this manner can maximum yield potential be achieved (Source: Potash and Phosphate Institute).

Low fertility

Lack

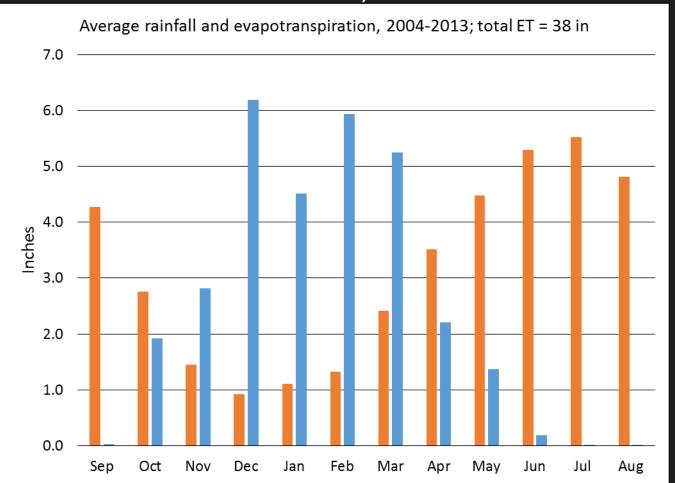
Site selection

Site selection


Rainfall and plant water demand

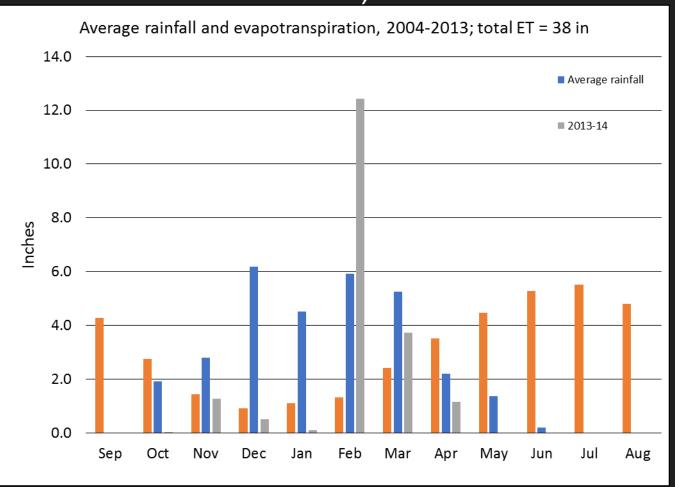
http://www.cimis.water.ca.gov/

Rainfall


Windsor, CA

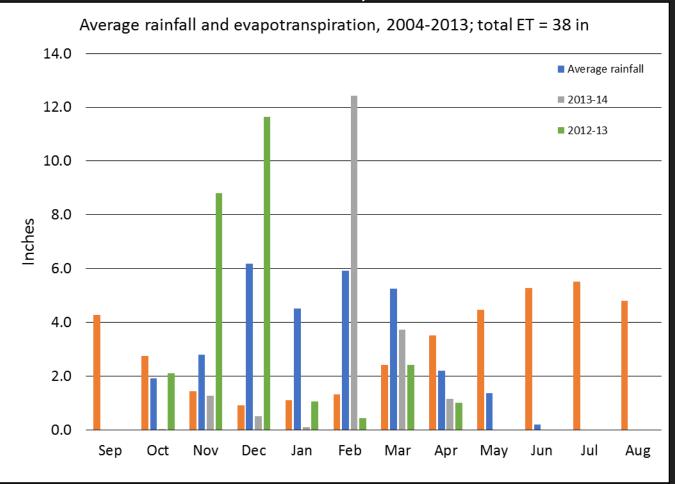
Average rainfall total: 30.4 inches

Rainfall and evapotranspiration



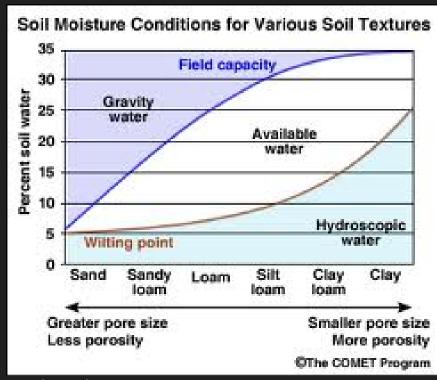
Aridity Index [Precipitation (30.4) / Evapotranspiration (37.9)] = 0.80

Rainfall distribution & totals vary from year to year



2013-2014 rainfall total: 19.3 inches

Rainfall distribution & totals vary from year to year

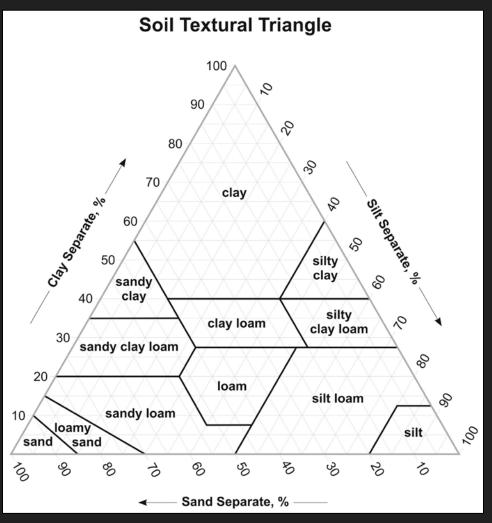


2013-2014 rainfall total: 19.3 inches 2012-2013 rainfall total: 27.5 inches

- Small grains use 17 26 inches of soil water
 - amount that leaves the system via evapotranspiration
 - barley < oats < wheat
- Amount of water available to the crop will depend on:
 - what you grow
 - when you plant
 - irrigation?
 - SOIL
- How much will soil water contribute to total evapotranspiration?

How much of evapotranspiration comes from soil water?

Meted.ucar.edu

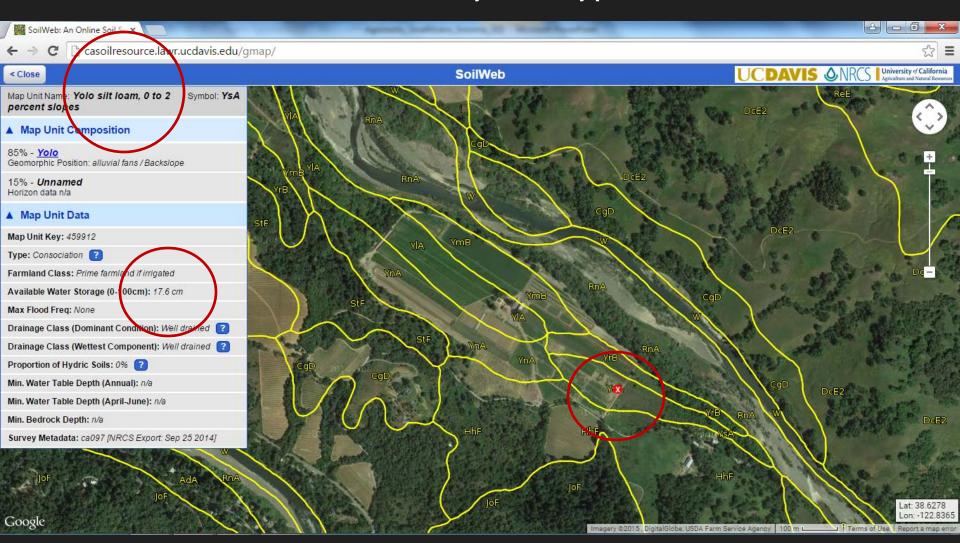

What is my soil type?

Depends on soil type

Available Water Capacity by Soil Texture									
Textural Class	Available Water Capacity (Inches/Foot of Depth)	Available Water Capacity (mm/m)							
Coarse sand	0.25-0.75	21-63							
Fine sand	0.75-1.00	63-84							
Loamy sand	1.10-1.20	92-100							
Sandy loam	1.25-1.40	104-117							
Fine sandy loam	1.50-2.00	125-167							
Silt loam	2.00-2.50	167-208							
Silty clay loam	1.80-2.00	150-167							
Silty clay	1.50-1.70	125-141							
Clay	1.20-1.50	100-125							

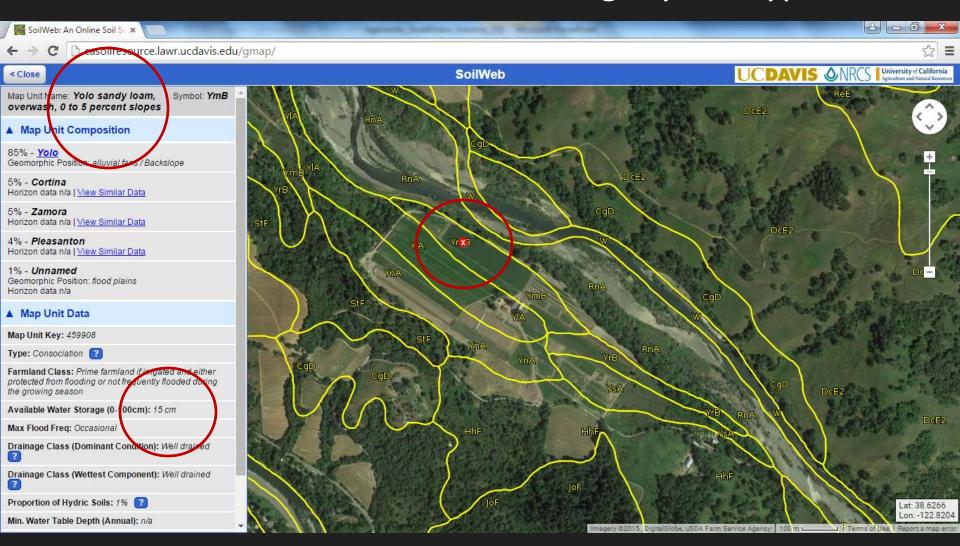
http://www.noble.org/ag/Soils/SoilWaterRelationships/Index.htm

What is my soil type?


- Soil texture does not change
- Soil structure, porosity, water holding capacity, organic matter are affected by management:

Eg. 1% increase in SOM

- ≈ 5% increase water retention
- improved infiltration, structure


NRCS

What is my soil type?

google: "soil web ucdavis"

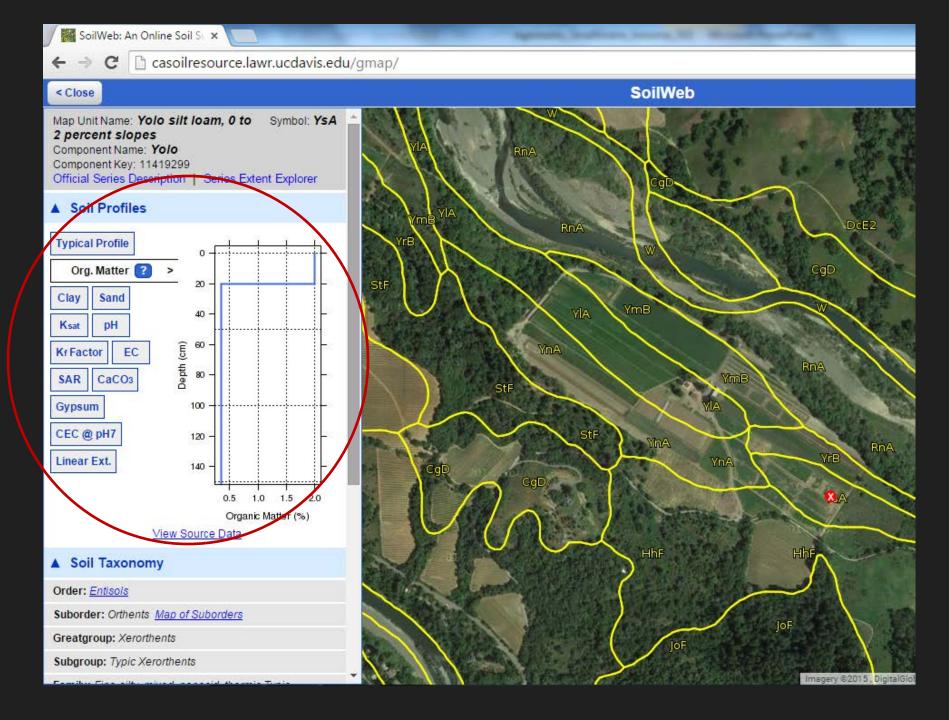
What can I learn from knowing my soil type?

150-167

125-141

100-125

Silty clay loam


Silty clay

Clay

1.80-2.00

1.50 - 1.70

1.20 - 1.50

Field-based soil texture estimation methods

Classification in the field

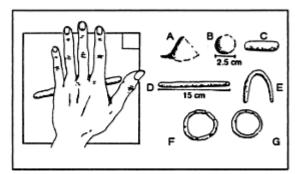
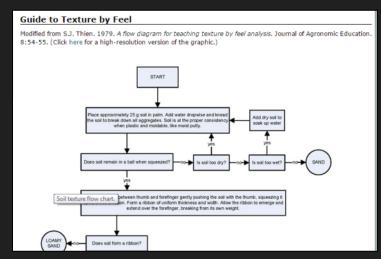
A simple manual texture test is shown below.

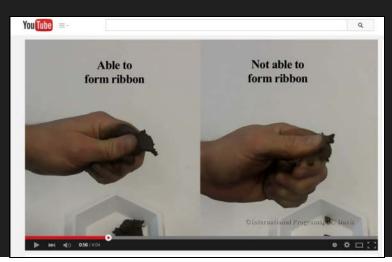
Explanation

- A ball about 2.5 cm diameter is formed from approximately 1 tablespoon of fine earth.
- Water is slowly dripped onto the soil until it approaches the sticky point, i.e., the point at which the soil
 just starts to stick to the hand.
- The extent to which the moist soil can be shaped by hand is indicative of its texture.

Textural class:

- (A) Sand Soil remains loose and single-grained; can only be heaped into a pyramid.
- (B) Loamy sand The soil contains sufficient silt and clay to become somewhat cohesive; can be shaped into a ball that easily falls apart.
- (C) Silt loam Same as for loamy sand but can be shaped by rolling into a short, thick cylinder.
- (D) Loam About equal sand, sift, and clay means the soil can be rolled into a cylinder about 15 cm long that breaks when bent.
- (E) Clay loam As for loam, although soil can be bent into a U, but no further, without being broken.
- (F) Light clay Soil can be bent into a circle that shows cracks.
- (G) Heavy clay Soil can be bent into a circle without showing cracks.

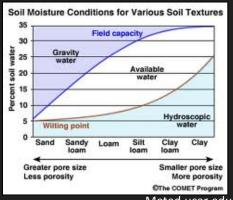




Figure 4. Field method for evaluation of soil texture by feel. From Ilaco (1985).

NRCS:

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/edu/?cid=nrcs142p2 054311

UCDavis:



https://www.youtube.com/watch?v=GWZwbVJCNec

Estimating depth of moisture, time to stress from soil type

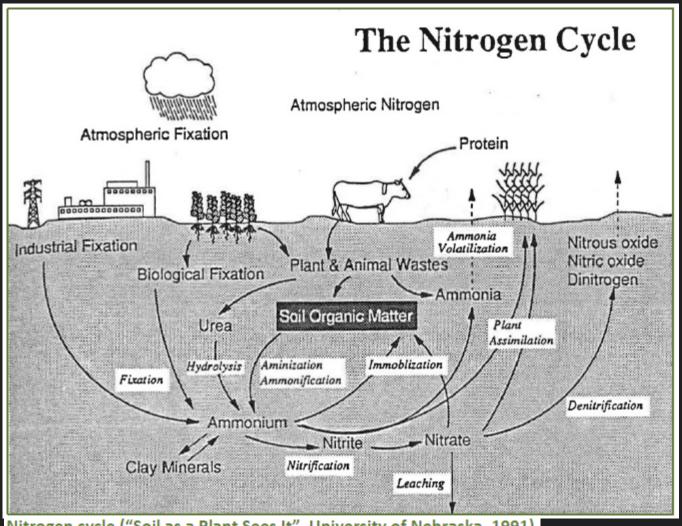
Table 1. Percent moisture by volume

	Perm. Wilting	Field	Available
Texture	Point	Capacity	Water
		%	
Medium Sand	2.5	10.0	7.5
Fine Sand	3.3	12.5	9.2
Sandy Loam	5.0	16.7	11.7
Fine Sandy Loam	6.7	21.7	15.0
Loam	10.0	26.7	16.7
Silt Loam	11.7	29.2	17.5
Clay Loam	15.0	31.7	16.7
Clay	21.7	33.3	11.7

Meted.ucar.ed

For a loam soil $\approx 27\%$ moisture by volume at field capacity (FC).

- If the rooting depth is 20 inches, 20 in x 0.27 = 5.4 inches of water by volume
- Rule of thumb: FC/2 = available water. So, 5.4 / 2 = 2.7 inches of available water.


When will stress begin?

• Rule of thumb: stress begins at available water / 2. So 2.7 / 2 = 1.35 inches before stress.

Average daily ET in April in Windsor = 0.20 inches

- 1.35 inches / 0.20 inches per day
 - ≈ 7 days before stress.
 - ≈ 9 days if you use the table.

Soil type is a major factor in soil fertility

Nitrogen cycle ("Soil as a Plant Sees It", University of Nebraska, 1991).

Estimating soil fertility: Don't let the perfect be the enemy of the good

Figure 3. Nitrate-N quick hand test.

Figure 4. Nitrate color scale.

http://www.nrcs.usda.gov/Internet/FSE_DOC UMENTS/nrcs142p2 053274.pdf

Estimating soil fertility: Some rough rules of thumb

- Total N: Clay > Silt > Sand
 - effective/available N ≠ total N
- ppm soil NO3-N x 3.8 \approx lb N ac⁻¹ ft⁻¹ of soil
 - eg. 12 ppm NO3-N (1st ft) x 3.8 ≈ 46 lbs available N
- Manure: assume about 10% mineralized / season
 - 5 tons dry manure / acre; with 1.8% N ≈ 18 lb ac⁻¹ yr⁻¹

Estimating soil fertility: Some rough rules of thumb

- Prior crop N contribution (depends on productivity of prior crop):
 - Tomato residue ≈ 25 lb ac⁻¹ returned
 - Alfalfa contribution ≈ 75 lb ac⁻¹ +
- Soil organic matter (SOM) N mineralization:
 - 1.2% OM % x 30 lb N / % OM \approx 36 lb ac⁻¹
- BUT! Mineralization rates vary (2-5%) year⁻¹
 - depend on C:N ratio, temperature, moisture, residue quality, etc.

Estimating soil fertility: Some rough rules of thumb

- Critical C:N ratio for residues ≈ 20
 - Residues with C:N > 20 will "fix" N

	C:N	Fix or release N?
Manure (Fresh)	15:1	RELEASE
Legumes (peas etc.)	15:1	RELEASE
Grass Clippings	20:1	EQUILIBRIUM
Weeds (Fresh)	25:1	FIX
Hay (Dry)	40:1	FIX
Weeds (Dry)	90:1	FIX
Straw, cornstalks	100:1	FIX
Sawdust	500:1	FIX

 Bottom line: fertility will be site-specific and a function of recent & long-term rotation/soil management

Estimating plant N removal from the system

If yield = 2500 lb acre⁻¹ and protein = 12.5%

How much N am I removing from the system?

2500lb acre⁻¹ x 0.125 / 5.7 (protein to N factor)

• ≈ 55 lb N in grain

55 x 1.33 (additional straw requirement)

- = 73 lb 55lb
- ≈ 18 lb N in straw

If we estimated that 100 lb of N are available from soil NO3-N, SOM, and manure addition, will this crop experience N deficiency?

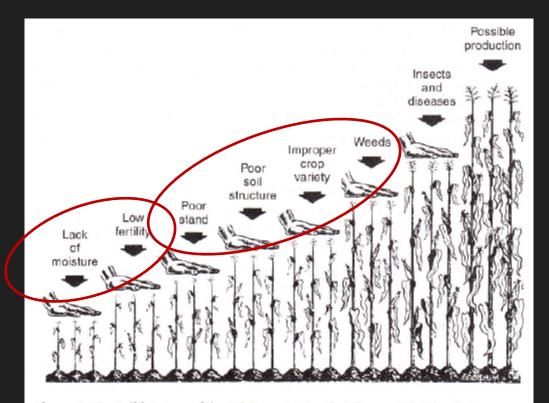
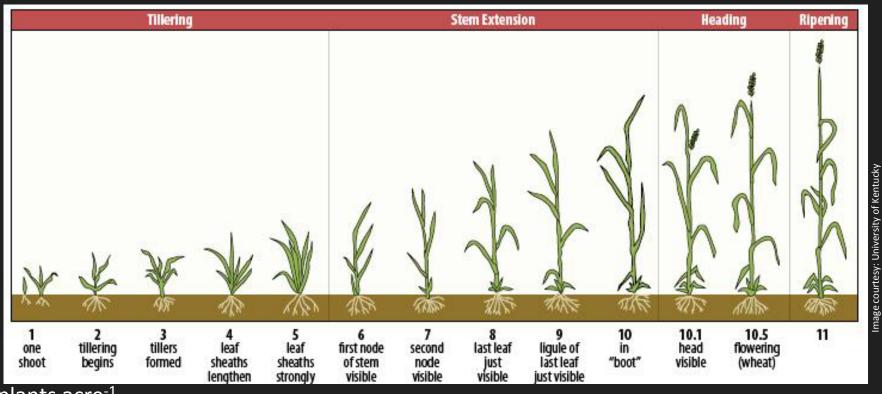



Figure 1-10 Leibig's Law of the Minimum states that the most limiting factor determines yield potential. Producers should minimize or eliminate the most limiting factor first, then the second most limiting factor, and so forth. Only in this manner can maximum yield potential be achieved (Source: Potash and Phosphate Institute).

Havlin, J. L. et al. 2005. Soil Fertility and Fertilizers, 7^{th} ed.

Small grain growth stages and yield components

plants acre-1

tillers plant⁻¹ spikelets spike⁻¹

spike plant⁻¹

grains spikelet⁻¹

grains acre-1

weight kernel⁻¹

GRAIN YIELD

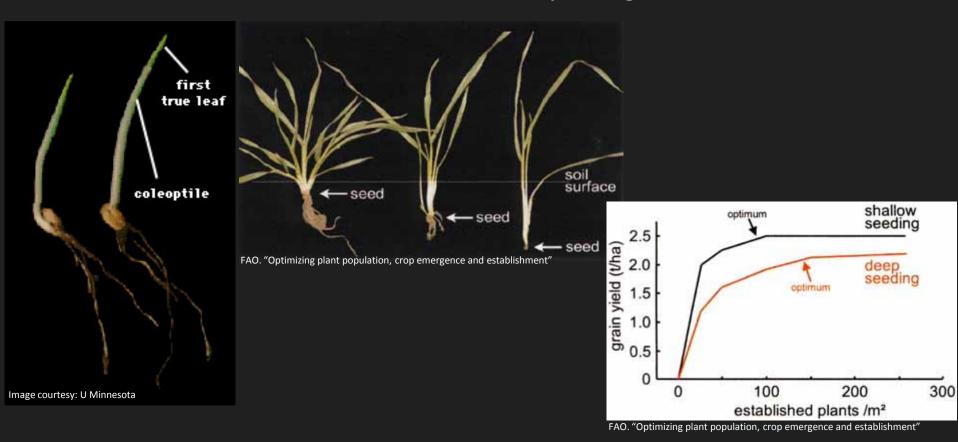
Seed selection

- Certified seed?
- plump uniform seeds, not cracked or broken, no weed seeds
 - < 1 year old</p>
 - stored in dark, cool, dry conditions (free from pests and disease)

FAO. "Optimizing plant population, crop emergence and establishment"

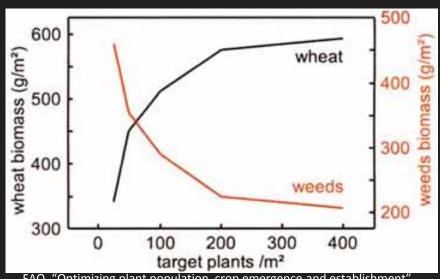
Germinability

- Rule of thumb: subtract 15% from germination test to get field germinability
- Seed-soil contact, soil moisture, temperature determine germination in the field
 - Rule of thumb: soil aggregates are no more than 3-4X seed size



optimum seed rate if drilled optimum seed rate if broadcast broadcast seed rate (kg/ha)

FAO. "Optimizing plant population, crop emergence and establishment"


Seeding Depth

- Rule of thumb: depth less than the coleoptile length.
 - coleoptile length varies
- Plant to moisture? or Moisture to follow?
 - Ensure sufficient moisture for complete germination

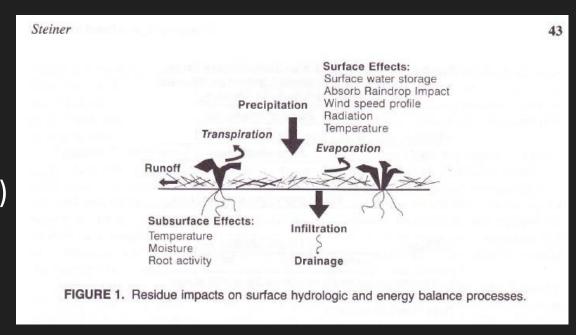
Seeding rate

- Optimum plant populations and seeding rates require some empirical work. Range for most small grains: 75 – 125 lb acre⁻¹
 - spelt is higher (160 lb acre⁻¹ +)*
- Seeding rate interacts with weeds.
- BUT! For heirloom varieties, higher seeding rates will also tend to produce more lodging. WHY?
 - Site fertility also interacts with lodging outcomes.

"Optimizing plant population, crop emergence and estab

Seeding rate exercise:

- 2, 6 inch rows with 12 seeds per linear ft = 24 seeds / ft²
 - $43560 \text{ ft}^2 \text{ acre}^{-1} \times 24 \text{ seeds} / \text{ft}^2 = 1045440 \text{ seeds acre}^{-1}$
- For 10000 seeds lb⁻¹:
 - 1045440 seeds acre⁻¹ / 10000 seeds lb⁻¹ = 104 lb of seed acre⁻¹
- For 85% field germination rate:
 - 104 lb seed acre⁻¹ / 0.85 = 122 lb seed acre⁻¹


Plant population exercise:

- 2, 6 inch rows with 12 seeds per linear ft = 24 seeds / ft²
 - 43560 ft² acre⁻¹ x 24 seeds / ft² = 1045440 seeds acre⁻¹
- For 85% field germination rate:
 - 1045440 seed acre⁻¹ x 0.85 = 888624 plants acre⁻¹
 - How many tillers per plant?
 - How many spikes per tiller?
 - How many spikelets per spike?
 - How many grains per spikelet?
 - Kernel weight?
- For 2500 lb acre-1 yield, how many plants support 1 lb?
 - 888624 plants acre⁻¹/ 2500 lb acre⁻¹ = 355 plants lb⁻¹ grain
- When growing an heirloom variety, determining the optimum plant stand & seeding rate for your operation is worth the effort!

A brief note on TILLAGE

Why till?

- residue incorporation
- weed competition
- soil aeration
- aggregation (short term)
 - seed-soil contact

Why no-till?

- reduced erosion, increased microbial diversity
- improved carbon retention, nutrient cycling (long term)
- improved water use efficiency, infiltration (long term)

Benefits of no-till are realized over the medium, long-term

- specialized equipment required
- short-term productivity losses
- residue, weed control are an issue for organic no-till

Variety Choice

Organic Seed Alliance

Advancing the ethical development and stewardship of the genetic resources of agricultural seed PO Box 772, Port Townsend, WA 98368

2013 California North Coast Organic Wheat Trials

COLUMBIA FOUNDATION

In partnership with University of California Cooperative Extension With support from the California Wheat Commission and Columbia Foundation

Variety Choice

		Stripe rust	Relative maturity			Plant height		ht	Lodging		Yield @ 13% moi		iture	Moisture		Test weight		Protein		
Variety	Type	CR	CR	FPF	ALL	CR	FPF	ALL	CR	FPF	CR	FPF	ALL	CR	FPF	CR	FPF	CR	FPF	ALL
		- % -	1	to 9 sca	ale ····	in			1 to 9 scale lbs / a		s / acre -	%		lbs / bu		······································				
Yecora Rojo	HRS	76.7a	3.0e	2.8e	2.9e	18.0f	20.0f	19.0e	8.3bc	6.5abc	3265ab	1908a	2587a	13.1cd	11.7a	60.2c	59.6ab	12.6c	10.2e	11.4d
Canus	HRS	43.3b	5.0d	5.0d	5.0d	34.0c	30.0bc	32.0b	7.0c	3.0d	2609bc	1392b	2000ь	13.1cd	10.8e	62.1b	59.9a	13.3b	13.5bc	13.4bc
Lassik	HRS	0.0c	4.8d	5.3d	5.0d	25.3d	24.0e	24.7d	8.8ab	8.0ab	3585a	1816a	2701a	12.5d	10.9de	63.9a	60.0a	12.7bc	12.6cd	12.7c
Red Fife	HRS	63.3a	7.3b	7.0b	7.1b	36.7b	30.5b	33.6b	8.0bc	6.3bc	1901de	616d	1258de	14.0ab	11.1cd	62b	59.9a	13.2b	14.2b	13.7b
Alturas	SWS	3.3c	5.0d	5.0d	5.0d	22.7e	26.3de	24.5d	7.0c	8.5a	2197cde	949c	1573cd	13.8bc	11.3bc	62.8b	58.1bc	11.1d	11.5de	11.3d
Diva	sws	10.0c	6.0c	6.0c	6.0c	25.7d	27.5cd	26.6c	7.3c	5.75c	2465cd	896cd	1680c	13.9bc	11.2c	62.2b	60.2a	11.5d	11.5d	11.5d
Foisy	SWS	46.7b	9.0a	9.0a	9.0a	45.3a	35.3a	40.3a	9a	7.5abc	1692e	638cd	1165e	14.7a	11.5ab	60.8c	57.8c	15.2a	17.1a	16.2a
AVE		34.8	5.7	5.7	5.7	30	27.6	28.7	2.1	6.5	2531	1173	1852	13.6	11.2	62.0	59.4	12.8	12.9	12.9
CV (%)		25	5	5	5	6	7	6	45	22	23	18	23	3	2	1	2	3	7	5
LSD		12.7	0.4	0.4	0.3	2.5	3	1.9	1.4	2.1	791	314	411	0.76	0.3	0.7	1.7	0.5	1.3	0.7

CR = College of the Redwoods Farm

FPF = Front Porch Farm

ALL = Combined results from CR and FPF

Numbers in bold are the optimum greatest or least trait value or are not significantly different from the optimum

Letters after trait value indicate groups of varieties whose means are not significantly different for that trait.

Variety Choice

NORTHWEST CROPS & SOILS PROGRAM

2014 Heirloom Spring Wheat Seeding Rate Trial

Dr. Heather Darby, UVM Extension Agronomist Erica Cummings, Katie Blair, Susan Monahan, Julian Post, Sara Ziegler UVM Extension Crops and Soils Technicians (802) 524-6501

Visit us on the web: http://www.uvm.edu/extension/cropsoil

C January 2015, University of Vermont Extension

The Whole Grain Connection

http://www.sustainablegrains.org/

List of available seeds

Common wheat (hexaploid, free threshing)

Triticum aestivum ssp aestivum

Variety (WGC catalog number) USDA accession number	Bearded or beardless	Historical notes (year collected by USDA or other)	Seed color (white or red)	Spring (short season) or winter (long season) type
Sonora (012) CItr 3036	beardless	Cultivar from landrace in Durango, Mexico. Perhaps the first successful wheat in Mexico from 1500. (1907)	Pale yellow (white)	Spring (shortest season)
Wit Wolkoring (013) PI 479660	beardless	Cultivar from South Africa. Presumed from landrace, but may be a cross.(1983)	Pale yellow (white)	Spring (shortest season)

http://www.sustainablegrains.org/sitebuildercontent/sitebuilderfiles/wheatseedcatalog2015.pdf

http://www.uvm.edu/extension/cropsoil/grains

Tine weeding at early vegetative growth stage

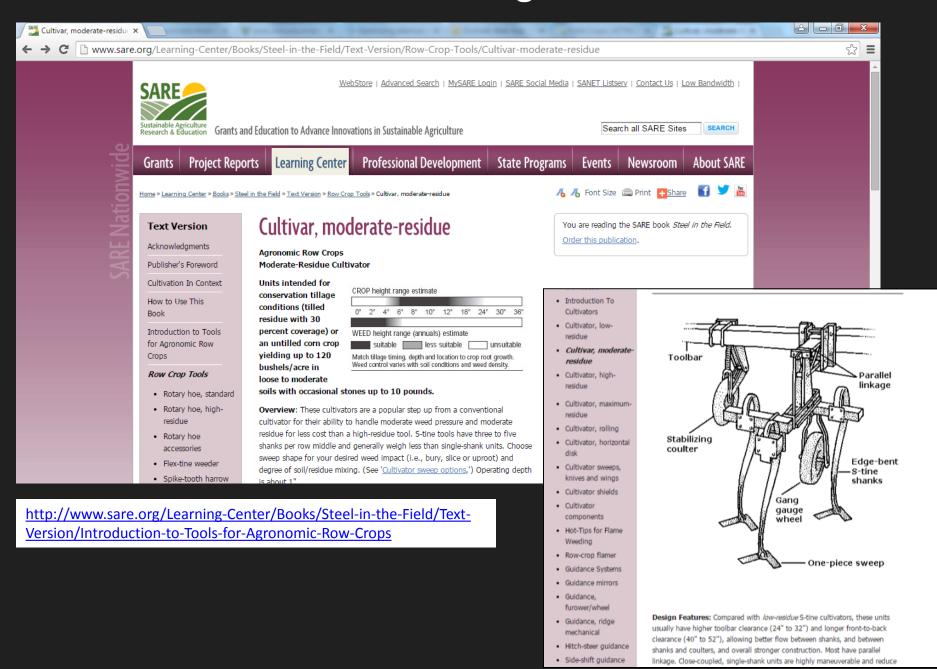
• soil moisture, subsequent water will play into success/failure

First pass with the tine weeder after spring wheat emergence.

ORGANIC Small-Scale, Holistic Grain Production for the Home and Market Producer The work of the weeds

From: Lazor, 2013. "The Organic Grain Grower."

Inter-seeding / relay-seeding red clover



Stale seedbed techniques

require precision in space and time

Image courtesy: http://store.farmstart.ca/

Dual purpose wheat

Increased flexibility / risk mitigation for integrated crop-livestock systems

- generally fall-established wheat
- wait to graze until wheat is tillering
- grazing too long will severely reduce grain production
 - remove animals prior to first hollow stem

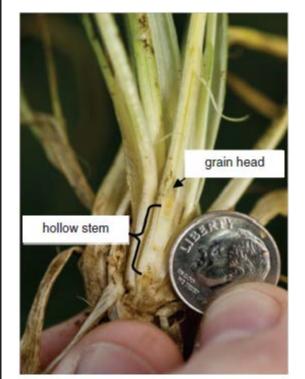
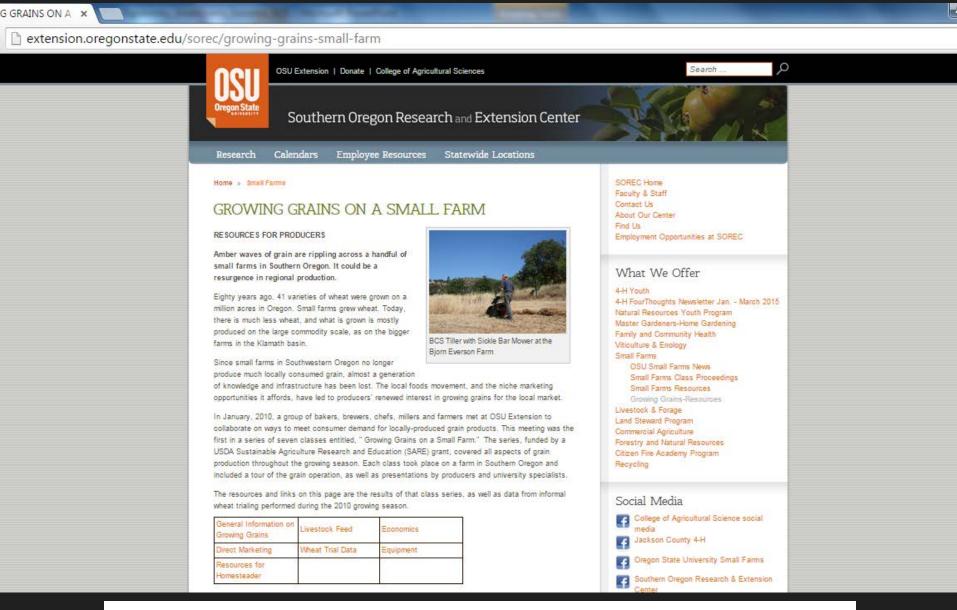
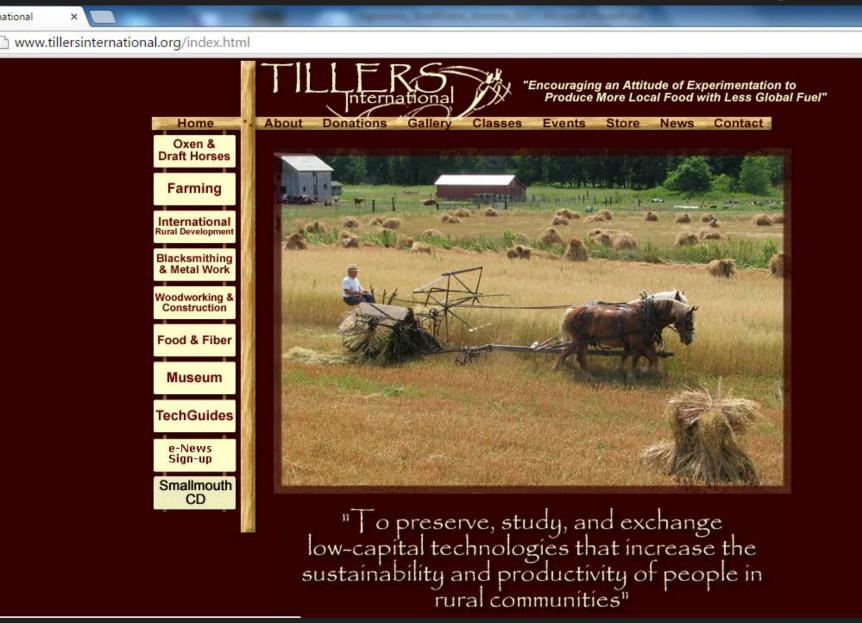
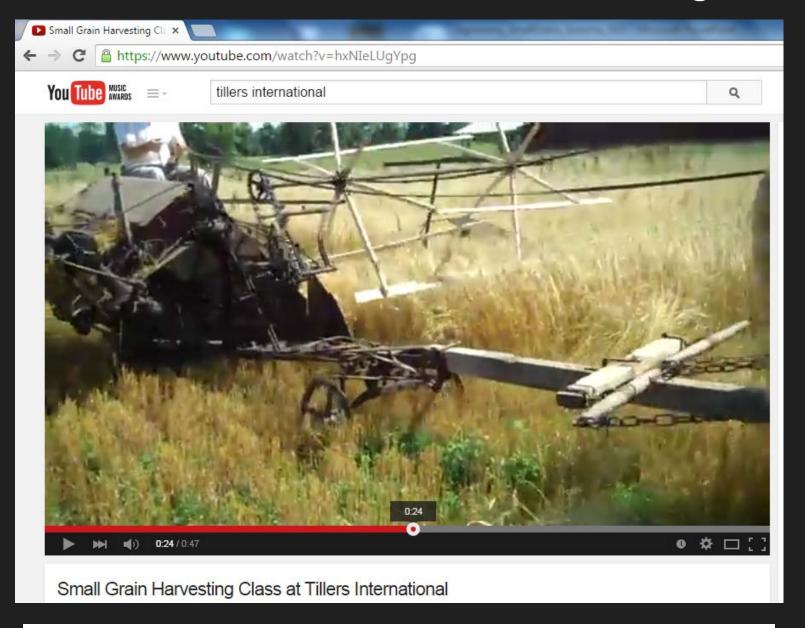




Figure 2. First hollow stem occurs when hollow stem equivalent to the diameter of a dime (1.5 cm) is present below the developing grain head.


Oklahoma State University: http://osufacts.okstate.edu/docushare/dsweb/ Get/Document-6693/PSS 2147web.pdf

http://extension.oregonstate.edu/sorec/growing-grains-small-farm

http://www.tillersinternational.org/

https://www.youtube.com/watch?v=hxNIeLUgYpg

Home built no-till seed drill

Short description:

This is my home built no-till seed drill I use for planting legume mix winter cover crop seed in our stone fruit orchard. It produces very uniform seed spacing and depth with minimal soil disturbance, allowing optimum germination in our dry farmed environment.

http://farmhack.org/tools/home-built-no-till-seed-drill

bicycle powered thresher, fan mill, and dehuller

Short description:

prototypes of a suite of bike powered tools for small scale grain processing; a thresher, a fan mill/winnower, and a dehuller. Many thanks to Olaf B-N for making this video:
https://www.youtube.com/watch?v=Lgnmhtbgyfg

Hope springs eternal...

Thank you!

contact: melundy@ucanr.edu

