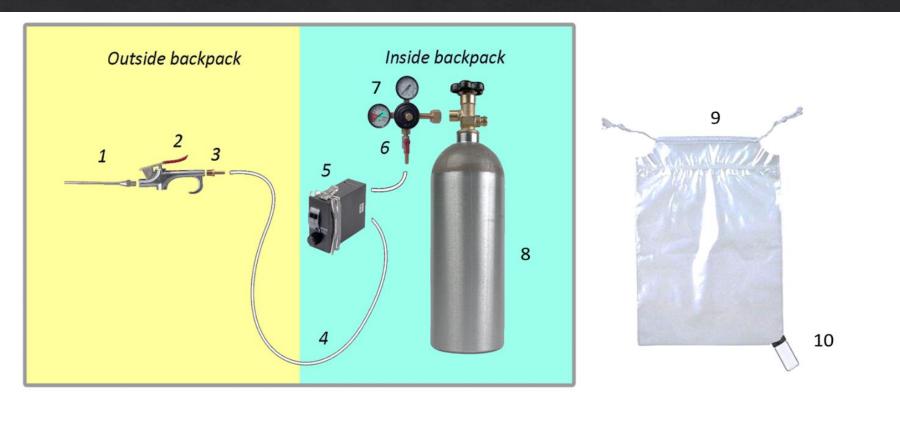
Improving management of arthropod pests in strawberry production systems

Christian Nansen, Elvira De Lange, and Emily Bick UC Davis

Where the pest management story begins....

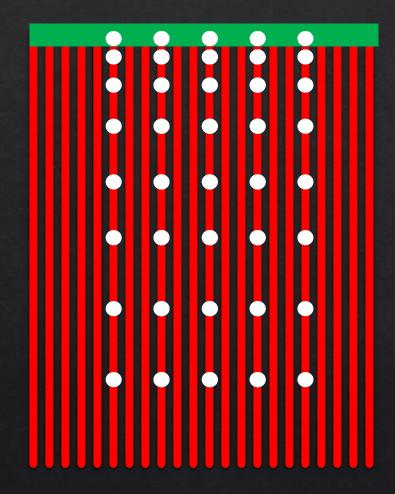
Better sampling/detection methods for *Lygus*

Use of alfalfa as a trap crop for *Lygus*

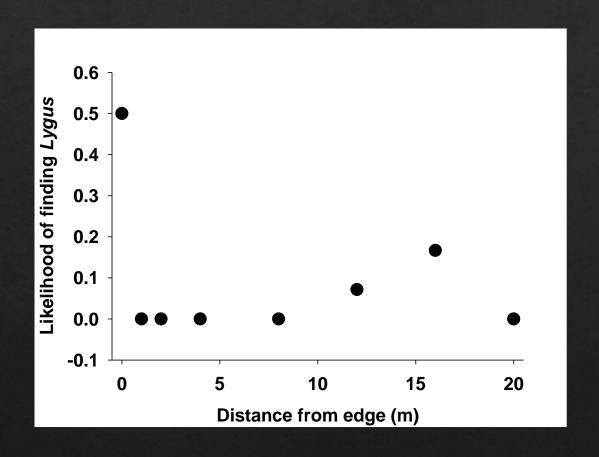

Better understanding of how pesticide spray coverage can be optimized

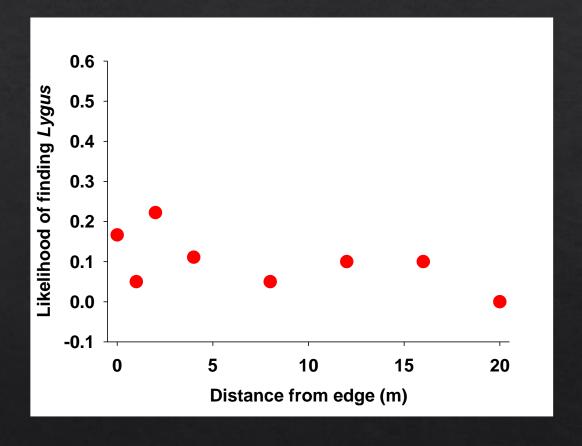
Drone-based releases of predatory mites to control spider mites

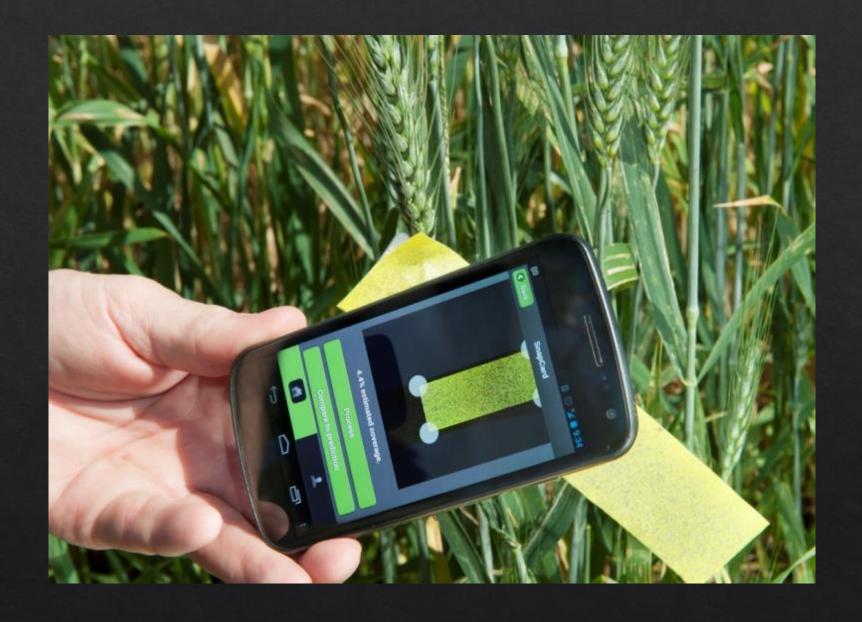
Better sampling/detection methods for Lygus



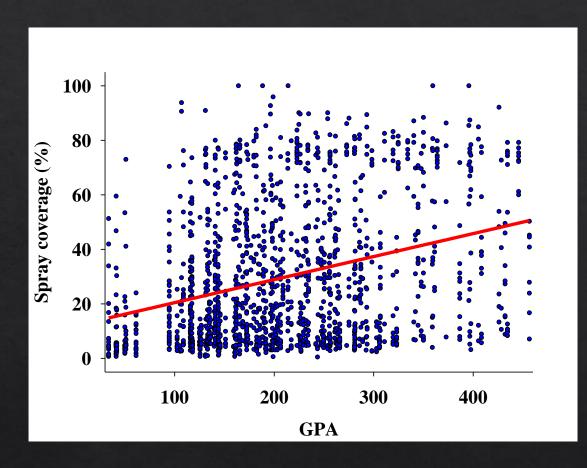
Better sampling/detection methods for *Lygus*

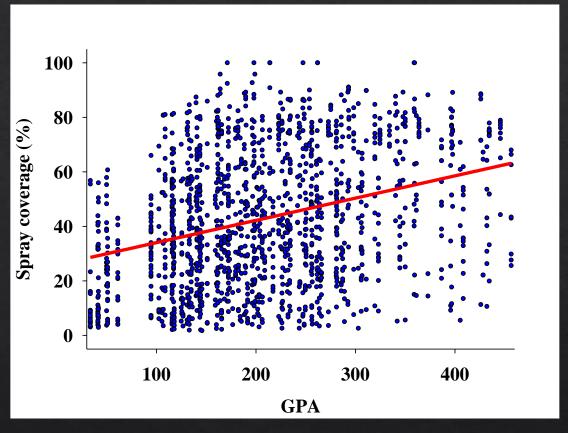

Novel Sampling Device


Use of alfalfa as a trap crop for Lygus



Use of alfalfa as a trap crop for Lygus




1140		Jou	RNAL O	Spray cover	IC ENT	OMOLOG	Υ			Vol. 10	4, no. 4
Table 2. Spraying conditions from 14 commerc			8.5	le applications in potato fields							
Location	Application	liter/ha	Ht	3.8 2.5	n	Wind speed	Wind gust	Temp (°C)	RH (%)	Dew point	Spray cover
Pearsall	Air	47	40.6	1.8		6.7	10.9	17.6	84.5	14.9	8.5
Pearsall	Air	47	38.1	5.9		16.9	25.3	22.3	82.0	19.0	3.8
Edinburg	Air	66	22.9			16.0	22.4	7.6	87.5	5.6	2.5
Edinburg	Air	66	33.0	6.0		12.2	18.7	24.0	68.8	27.3	1.8
Edinburg	Air	66	40.6	6.8		9.3	14.6	22.1	58.1	13.3	5.9
Edinburg	Air	66	40.6	9.3		9.3	15.4	22.7	84.3	19.9	6.0
Edinburg	Air	66	33.0			3.7	7.9	20.0	64.0	13.0	6.8
Edinburg	Air	66	35.6	67.0		7.7	11.0	7.1	65.8	4.4	9.3
Olton	Ground	190	25.4	28.6		22.3	30.9	25.5	59.7	16.9	67.0
Olton	Ground	190	43.2	34.4		16.9	25.0	25.7	54.0	15.6	28.6
Olton	Ground	190	54.6			17.4	25.4	31.9	29.6	11.9	34.4
Olton	Ground	190	63.5	22.6		22.5	30.1	26.0	67.7	19.6	22.6
Pearsall	Ground	190	16.5	41.9		5.9	10.9	23.5	61.6	14.9	41.9
Pearsall	Ground	190	29.2	24.9		10.6	16.2	17.8	63.8	10.6	24.9
Application	ns were either wit	h fived wing at	rolana ar		litor/ho	enrov vol	ma appliad	l conony no	rtion of the	o conony, hi	

Applications were either with fixed wing airplane or ground rig; liter/ha, spray volume applied, canopy, portion of the canopy; ht, average plant height (centimeters); radiation, solar radiation (Watts per square meter); wind speed, average wind speed (kilometers).

Nozzle_type	Cards
AI_9502E	240.00
TJ_XR8003-VK	168.00
TJ_60-8004	168.00
D2_w/_DC45	240.00
D3_w/_DC45	276.00
Green_ATR_80	276.00
Lilac_ATR_80	108.00
Orange_ATR_80	72.00
Grand Total	1548.00

Horizontal position GPA = 10% of variance

Vertical position GPA = 8% of variance

Averaged position = 37% of variance

Volume sprayed per area (gallons per acre)
Speed of tractor

Crop variety
Canopy density
Canopy structure

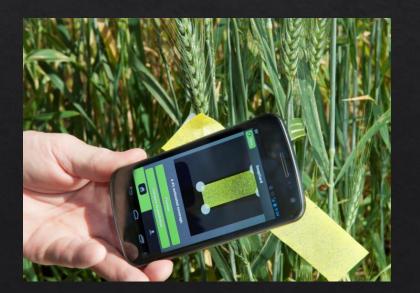
Temperature

Relative humidity

Wind

Barometric pressures

	Spray coverage					
Nozzle_type	Cards	Hori avg	Vert avg			
AI_9502E	240.00	27.83	37.68			
TJ_XR8003-VK	168.00	36.94	51.49			
TJ_60-8004	168.00	40.87	47.14			
D2_w/_DC45	240.00	24.07	40.59			
D3_w/_DC45	276.00	28.37	44.31			
Green_ATR_80	276.00	35.02	48.08			
Lilac_ATR_80	108.00	10.77	21.79			
Orange_ATR_80	72.00	21.39	43.06			
Grand Total	1548.00	29.53	42.81			

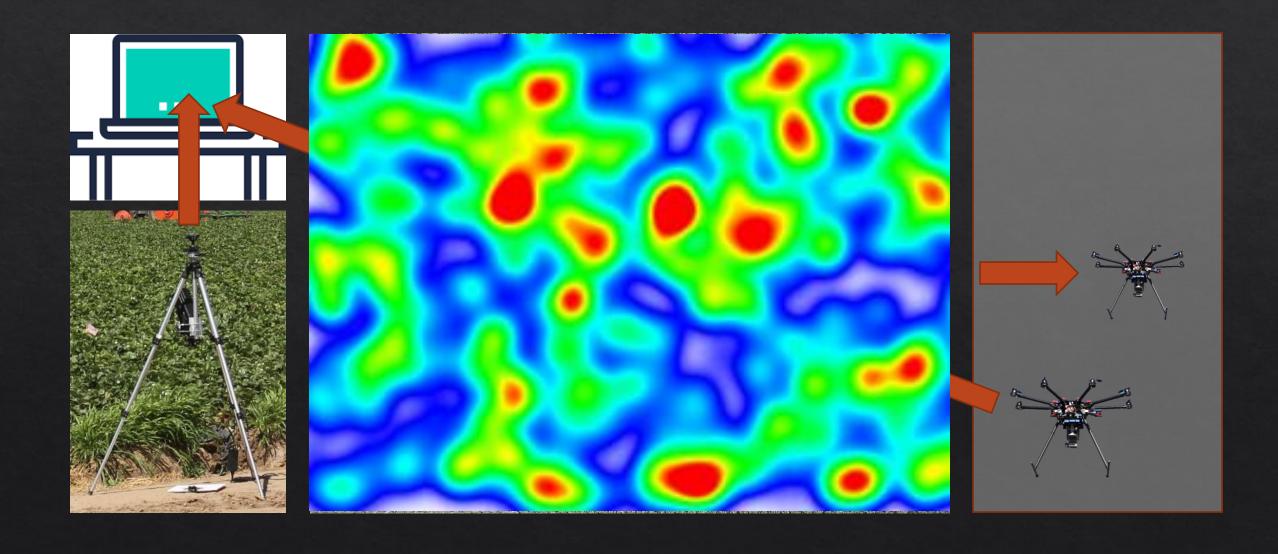


GPA and spray coverage – more to the story...

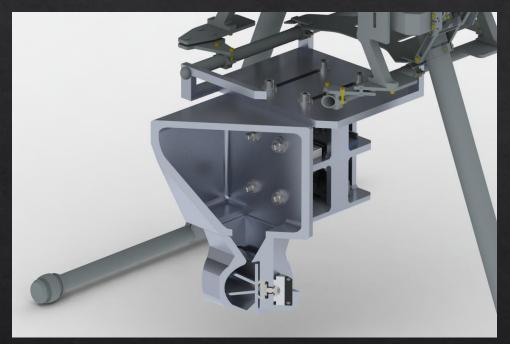
Nozzles do not respond the same way

Nozzles are not equally sensitive to spraying conditions

A phone app as a decision support tool



Release and dispersal of natural enemies



Drone-based releases of predatory mites to control spider mites

The system components – actuation drone

The multi-disciplinary team

Thank you!

