Tomato spotted wilt virus management with resistance-breaking strains

Tom Turini
Fresno County Cooperative Extension
Vegetable Crops Advisor

Overview

- Symptom recognition
- Background
- Plant resistance-breaking strain
- Management strategies

TSWV symptoms on tomato fruit

University of California
Agriculture and Natural Resources

Foliar symptoms of *TSWV*

Stage of crop development at the time of infection and stage of disease development influence symptoms

Beet curly top virus

University of California
Agriculture and Natural Resources

Alfalfa mosaic virus

University of California
Agriculture and Natural Resources

Tomato necrotic spot virus

Overview

- Symptom recognition
- Background

Thrips vectors TSWV

Frankliniella occidentalis (Western flower thrips) Primary vector of TSWV in Central California

University of California
Agriculture and Natural Resources

A. E.Whitfield, D. E. Ullman, and T L. German. 2005. TOSPOVIRUS-THRIPS INTERACTIONS. Annu. Rev. Phytopathol. 2005. 43:459–89

Pupal Stages Do Not Feed

Host Range of TSWV

Crop Hosts

- Radicchio
- Lettuce
- Celery
- Fava bean

- Tomato
- pepper
- Eggplant
- Potato

Weed Hosts

- Prickly lettuce (Lactuca serriola)
 Nightshade (Solanum spp.)
- Sowthistle (Sonchus spp.)
- Little mallow (Malva parvaflora)
- Mustard (Brassica spp.)
- London rocket (Sisymbrium irio)
- Wild Radish (Raphanus raphanistrum)
- Pineappleweed (Chamomilla suaveolens)
- Rough-seeded buttercup (Ranunculus muricatus)

University of California
Agriculture and Natural Resources

Jimsonweed (Datura stramonium)

Field bindweed (Convolvulus arvensis)

Annual Cycle TSWV/Western flower thrips in Central California

- Overwintering: in a small percentage of weeds and crops & TSWV pupating thrips
- Early season: reproduction of thrips and possible virus increase of TSWV on susceptible weeds and crops
- Mid season: movement to tomatoes and rapid increase in TSWV in areas with high levels of susceptible plants
- Late season: Highest pressure of the year

TSWV Resistance

- SW5: Single dominant gene
- In widespread use in the Central San Joaquin Valley for ~7 years
- No documentation of resistance-breaking strains in CA prior to 2016
- Expression in SW5 varieties due to Wild type TSWV
 - There may be expression on up to 3% of plants
 - Unusual fruit symptoms in the absence of foliar symptoms may occur

University of California
Agriculture and Natural Resources

Overview

- Symptom recognition
- Background
- Plant resistance-breaking strain

Detection of Resistance-breaking TSWV strain in Fresno Co. in 2016

 Mid-Apr 2016, severe and typical symptoms of TSWV in Sw-5 fresh market tomatoes in Cantua Creek (Fresno Co.)

- May 2016, severe TSWV in Sw5 fresh market tomatoes in Firebaugh (Fresno Co.)
- July 2016, moderate TSWV in Sw5 processing tomatoes in Huron area

All samples were Immunostrip positive

Virology – O. Batuman, R. Gilbertson

- RT-PCR/sequencing tests revealed only TSWV infection
- Raised the issue of the emergence/introduction of a resistance-breaking (RB) strain
- RB strains have been reported from Europe (Spain and Italy) and have been associated with specific amino acid substitutions in the viral movement protein (NSm)

Identification of TSWV RB strain

From Gilbertson presentation at UC West Side Research Extension Center on 14 Dec 2017

Resistance Breaking *Tomato spotted wilt virus*, 2017

- Detected in Sowthistle in Jan and Feb 2017 in Huron and Cantua Creek
- Resistance breaking strains associated with weedy areas early 2017 in Fresno Co.
- By Oct., 2017 over larger area in Fresno Co., detected in Merced and Brentwood.
- By the end of 2017, the resistance breaking TSWV strain was detected in lettuce, celery and peppers.

University of California
Agriculture and Natural Resources

Collaboration with Ag Seeds and TS&L, 2017

- Evaluation of variety trial in area affected by resistance-breaking TSWV on 17 Jul 2017
- Tomato spotted wilt virus incidence observed among entries at one site were from undetectable levels to 52% of plants expressing TSWV

2017 Preliminary Observations (NO REPLICATION)

Percentage TSWV in 80 Treatment Trial (No resistance and resistance grouped)

Variety Trial: Strain Determination

Variety	SW5 in	Strain
	variety	detected
H1015 -no SW5	-	CPT
BQ273 -SW5	+	YPT
N6402 -SW5	+	YPT
HM3887 -SW5	+	YPT
DRI319 -SW5	+	YPT
H1292 -SW5	+	YPT
BP13 -SW5	+	YPT

CPT=wild type strain

YPT= resistance-breaking strain

TSWV Field Research, 2018

- Monitoring of weeds & crops for resistance breaking strain
- Evaluation of commercial trials for varietal response in Central Valley
- Evaluation of lines with alternative mechanisms of resistance at the West Side Research and Extension Center

Overview

- Symptom recognition
- Background
- Plant resistance-breaking strain
- Management strategies

Successful TSWV Management Program Depends Upon Multiple Approaches

- Minimize host densities during winter
- Site selection
- Planting time: early season = lower risk
- Clean transplants
- Use of TSWV-resistant varieties
- Management of thrips

Management of Thrips

- Thrips degree day model is available online
- Radiant, Lanate and dimethoate deliver relatively consistent control
- Drip or transplant water-applied neonicotinoids have not reduced TSWV incidence in most trials
- Verimark transplant treatment reduced TSWV incidence 3/6 trials

Influence of Drip-Applied Insecticides

- thiamethoxam 193 g (3 Jun)
- thiamethoxam 193 g (3 Jun), dinotefuron 294 g (7 Jul)
- Untreated

- thiamethoxam 193 g (22 Jun), dinotefuron 294 g (12 Jul)
- thiamethoxam 193 g (22 Jun), dinotefuron 294 g (22 Jul)
- Untreated

- thiamethoxam 193 g (25 May), dinotefuron 294 g (30 Jun)*
- thiamethoxam 193 g (25 May), dinotefuron 294 g (30 Jun)
- Untreated
 - * Weekly injections of acibenzolar-s-methyl 35g/ha

2012

	date of application, rate					
17 Jun		1 Jul	15-Jul			
Treatment 1	Radiant 10 fl oz	Dimethoate 4EL 1 pt	Radiant 10 fl oz			
Treatment 2	Radiant 10 fl oz	Dimethoate 4EL 1 pt				
Treatment 3		Dimethoate 4EL 1 pt	Radiant 10 fl oz			
 Untreated control 						

	date of application, quantity ai/ha						
	Trans. drench	24-Jun	6-Jul	14-Jul	21-Jul		
• Treatment 1	Verimark 13.5 fl oz	Radiant 10 fl oz	Dimethoate 4EL 1 pt	Radiant 10 fl oz	Dimethoate 4EL 1 pt		
• Treatment 2		Radiant 10 fl oz	Dimethoate 4EL 1 pt	Radiant 10 fl oz	Dimethoate 4EL 1 pt		
• Treatment 3		Radiant 10 fl oz	Dimethoate 4EL 1 pt				
Untreated Co	ntrol						

	date of application, quantity ai/ha						
	drench	12-Jun	22-Jun	29-Jun	9-Jul	18-Jul	
Treatment 1	Verimark 13.5 fl oz	Radiant 10 fl oz	Dimethoate 4EL 1 pt	Radiant 10 fl oz	Dimethoate 4EL 1 pt	Radiant 10 fl oz	
• Treatment 2		Radiant 10 fl oz	Dimethoate 4EL 1 pt	Radiant 10 fl oz	Dimethoate 4EL 1 pt	Radiant 10 fl oz	
Treatment 3		Radiant 10 fl oz	Dimethoate 4EL 1 pt				
 Untreated Cor 	ntrol						

Impact of Insecticides on TSWV Symptomatic Plant Incidence, 2015

Impact of Insecticides on TSWV Symptomatic Plant Incidence, 2016

Impact of Insecticides on TSWV Symptomatic Plant Incidence, 2017

Influence of Insecticides on TSWV, 2017

	yield ^z	fruit quality (%) ^y			laboratory analysis ^x				
Treatment, application (date applied) ^w	(tons/ acre)	red	grn	sun burn	rot	TSW	color	solids	рН
HGW86-885 13.5 fl oz tray drench (17 May) ^v	61.08	74.43	1.28	4.09	1.28	4.98	25.0	4.78	4.503
HGW86-906 13.5 fl oz tray drench (17 May)	52.23	71.56	2.35	5.35	2.35	1.21	24.3	4.83	4.508
HGW86-885 13.5 fl oz tray drench (17 May) Platinum 11 fl oz buried drip application (23 Jun) ^u	57.49	72.21	1.51	5.05	1.51	3.53	24.5	4.85	4.523
Admire Pro 8.7 fl oz in transplant water (18 May) ^t Platinum 11 fl oz buried drip application (23 Jun)	56.78	74.18	2.05	3.20	2.05	4.28	24.5	5.03	4.525
Admire Pro 8.7 fl oz + SP2700 7.8 fl oz in transplant water (18 May) SP2700 7.8 fl oz (1 Jun) ^s Platinum 11 fl oz buried drip application (23 Jun)	60.75	70.92	2.74	5.11	2.74	3.39	25.0	4.90	4.523
Untreated control	65.71	67.72	2.75	6.34	2.75	6.47	25.0	4.63	4.518
LSD _{0.05} r	8.898	NS ^q	NS	NS	NS	3.059	NS	0.329	NS
CV (%)	10.01	6.47	49.82	49.82	65.85	51.02	4.55	4.52	0.95

Main Points

- Plant-resistance breaking TSWV is present in the Central San Joaquin Valley production area.
- Any TSWV foliar symptoms present in more than 3% of the plants should be checked for the resistance breaking strain
- Current management depends upon IPM, heavily reliant upon sanitation and site selection.
- Insecticides may reduce incidence but should not be relied upon without other approaches.

Acknowledgements

- CTRI
- Ag Seeds and TS&L
 UC DAVIS
- Dr. Robert Gilbertson
- Dr. Ozgur Batuman
- Dr. Maria Rojas
- Dr Mônica Macedo
 UC Coop. Ext.
- Scott Stoddard
- Brenna Agerter

- University of California
 West Side Research
 Center Staff
- Daniel Delgado

University of California
Agriculture and Natural Resources