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SUMMARY. Although infectious bronchitis virus (IBV) has been described as one of the most economically important viral
respiratory diseases in poultry, there are few analyses of outbreaks that use spatial statistics. In order to better understand how the
different genotypes of IBV behave spatially and temporally, we used geographic information system-based mapping coupled with
spatial and spatial-temporal statistics to identify statistically significant clustering of multiple strains of infectious bronchitis (IB)
between 2008 and 2012 in California. Specifically, space-time permutation and multinomial models were used to identify spatial
and spatial-temporal clusters of various genotypes of IBV. Using time permutations (i.e., windows) spanning days to years, we
identified three statistically significant (P , 0.05) clusters. In contrast, multinomial models identified two statistically significant
spatial-temporal clusters and one statistically significant spatial cluster. When comparing the space-time permutation and
multinomial models against each other, we identified spatial and temporal overlap in two of the three statistically significant
clusters. From a practical perspective, multinomial clustering approaches may be advantageous for studying IB because the model
allows the different genotypes of IB to be independent nominal variables, thereby allowing for a more detailed spatial analysis. To
that point, based on their risk ratios, the genotypes classified as vaccine-related were identified as the most significant contributor to
two of the three mutinomial clusters. Additionally, statistically significant clusters were mapped and layered on a hot-spot analysis
of commercial poultry farm density in order to qualitatively assess the relationship between farm density and clusters of IBV.
Results showed that one of the three space-time permutations and one of the three multinomial clusters were spatially centered near
the highest density farm areas, as determined by the hot-spot analysis.

RESUMEN. Uso de modelos multinomiales y permutaciones espacio-temporales para comprender la epidemiologı́a de la
bronquitis infecciosa en California entre los años 2008 y 2012.

Aunque el virus de la bronquitis infecciosa (IBV) se ha descrito como una de las enfermedades virales respiratorias de mayor
importancia económica en la avicultura, existen pocos análisis de brotes que utilicen estadı́sticas espaciales. Para comprender mejor
como los diferentes genotipos del virus de la bronquitis se comportan espacial y temporalmente, se utilizó un mapeo basado en el
sistema de información geográfica junto con estadı́sticas espaciales y espacio-temporales para identificar la agrupación
estadı́sticamente significativa de múltiples cepas del virus de la bronquitis infecciosa (IBV) entre los años 2008 y 2012 en
California. Especı́ficamente, se usaron modelos de permutación espacio-tiempo y modelos multinomiales para identificar
agrupamientos espaciales y espaciales-temporales de varios genotipos del virus de la bronquitis infecciosa. Usando permutaciones de
tiempo (denominados ventanas) que abarcaban de dı́as a años, se identificaron tres grupos estadı́sticamente significativos (P
,0.05). Por el contrario, los modelos multinomiales identificaron dos grupos espacio-temporales que fueron estadı́sticamente
significativos y un grupo espacial que fue estadı́sticamente significativo. Al com̌parar entre las permutaciones espacio-temporales y
los modelos multinomiales, se identificó superposición espacial y temporal en dos de los tres conglomerados estadı́sticamente
significativos. Desde una perspectiva práctica, los enfoques de agrupamiento multinomial pueden ser ventajosos para el estudio del
virus de la bronquitis porque el modelo permite que los diferentes genotipos del virus de la bronquitis sean variables nominales
independientes, lo que permite un análisis espacial más detallado. Hasta ese momento, en función de sus proporciones de riesgo, los
genotipos clasificados como relacionados con la vacuna se identificaron como los contribuyentes más significativos a dos de los tres
grupos mutinomiales. Además, se mapearon y agruparon grupos estadı́sticamente significativos en un análisis de puntos calientes de
la densidad en granjas avı́colas comerciales con el fin de evaluar cualitativamente la relación entre la densidad de las granjas y los
grupos del virus de bronquitis infecciosa. Los resultados mostraron que una de las tres permutaciones espacio-temporales y uno de
los tres grupos multinomiales se centraron espacialmente cerca de las áreas agrı́colas con mayor densidad, según lo determinado por
el análisis de puntos calientes.

Keywords: IB outbreak, GIS, spatial statistics

Abbreviations: Ark ¼ Arkansas; IB ¼ infectious bronchitis; IBV ¼ infectious bronchitis virus; Cal99 ¼ California variant 99,
CA1737¼California variant 1737; Conn¼Connecticut; GIS¼ geographic information system; Mass¼Massachusetts; NA¼ not
available; OHS ¼ optimized hot spot; STPM ¼ space-time permutation model; Vacc ¼ vaccine.

Infectious bronchitis (IB) in chickens is a highly contagious

disease caused by the infectious bronchitis virus (IBV) (3). IB

primarily affects the upper-respiratory tract of chickens and

replicates in the epithelial tissues of the respiratory, urinary,

reproductive, and intestinal tracts (2,11). Infection is associated

with reduced egg production and quality in egg-type chickens and

poor feed conversion and increased condemnation in meat-type

chickens. One of the main limiting factors in controlling IBV is the

use of nonserotype-specific vaccines that can result in the formation

of novel variants (10). Specifically, these types of control efforts

culminate in the generation of novel variant strains that circumvent
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vaccine-based immunity and thereby perpetuate the virus in the field
(10), which results in costly and nonefficacious preventive strategies
(4,20,25).

Currently, an extensive amount of research has focused on variant
types (3,7,8,10,12,19,20,25), vaccinations protocols (1,12,16,17),
and the relationship between new IBV variants and the emergence of
disease (12,26). However, there are no studies that investigate how
the different subtypes of IBV behave spatially and temporally at the
population level, with respect to clustering and distribution. The use
of spatial-temporal statistical models to look at infectious diseases
such as IB can be an important tool in determining critical time-
space boundaries with respect to IB prevention and control
programs.

Among the tools available to explore questions regarding spatial-
temporal disease distribution, space-time permutation models
(STPMs) and multinomial models have been used for retrospective
disease cluster detection of different diseases (5,14,23). Briefly, these
models use ‘‘scanning windows,’’ which move across space (spatial
only), time (temporal only), and space and time (spatial-temporal)
in order to identify statistically significant clusters of disease.
Specifically, the scanning windows cover every possible time interval
for every possible geographic location within the temporal and
geographic boundaries of the study. Statistically significant clusters
appear when a statistically significant number of premises are
observed based on a log-likelihood ratio statistic (8). The STPM
approach compares the observed cases in a cluster to what would
have been expected if the cases were independent in space and time,
whereas the multinomial model allows for the analysis of different
case categories within a cluster (e.g., IB variants) by determining if
the distribution of cases and categories in a cluster are different from
the rest of the study region (13,14).

The objective of this study was to identify statistically significant
clusters of IBV events in space, time, and space and time in
California by using STPM and multinomial models. In addition,
the distribution of commercial poultry premises (e.g., separate
locations) in the central valley of California was analyzed in order to
better understand the relationship between density of farms and
disease events. The results of this study and the practical application
of these geographic information system (GIS)-based statistical
mapping models can be used to make targeted biosecurity and IB
vaccine recommendations to farmers.

MATERIAL AND METHODS

IBV cases. Out of the 1444 cases of IBV identified in California via
passive surveillance between 1997 and 2012, 131 IBV cases (9.1%) were
identified with address information and, hence, were included in this
study. Positive cases with address information were diagnosed by the
four California Animal Health and Food Laboratory System labs during
the period between September 1, 2008, and December 31, 2012.
Diagnoses were performed from samples obtained from birds with
clinical signs and/or with gross and microscopic lesions consistent with
IBV. Virus identification was done by reverse transcriptase–polymerase
chain reaction targeting the hypervariable region of the spike protein
subunit 1. Products were submitted for sequencing, and sequences were
analyzed using Mac Vector 14.0. (MacVector, Inc., Apex, NC).
Sequence percent homologies were calculated after comparing them
against the GenBank NCBI database (Bethesda, MD), which is able to
detect variations in the spike protein subunit 1 to determine different
strains and variants. Virus isolations and identification were done
following the standard techniques described by the American

Association of Avian Pathologists (6). IBV genotypes identified in our
study included California variant 99 (Cal99), California variant 1737
(CA1737), Massachusetts (Mass), and Connecticut (Conn). To
represent the effects of vaccine-related strains, Conn and Mass were
grouped in a single category named ‘‘vaccines’’ (Vacc). Cases without
information regarding IBV strains or cases that did not match sequences
in GenBank were classified as not available (NA). Additional data
collected that were linked to each IBV variant included date of
submission, IBV genotype, and submitter.

Spatial distribution of IBV. Using address data collected and
recently updated (2017) by a regulatory agency, we georeferenced all
commercial poultry farms within California and performed an analysis
using the Optimized Hot Spot (OHS) analysis tool in ArcGISt version
10.2. The OHS analysis identifies statistically significant hot spot and
cold spot clusters by aggregating the incident cases (i.e., poultry premises
in California) into fishnet polygons that are positioned over the study
region (18,22). The size of each cell in the fishnet is computed from an
algorithm considering both the average and median nearest neighbor
distances among premises, adjusted by the lowest and highest distances
among premises. The premises within each cell were counted, the cells
with zero values were removed, and the remaining cells were analyzed.
The number of premises within each cell was used to calculate the Getis-
ORD Gi* statistic for each polygon. This is a spatial statistic that
produces a z score for each cell in order to determine the significant hot
spots (i.e., high z score) and cold spots (i.e., low z scores) in the study
area (9,22). Specifically, the analysis works by considering each cell
feature in terms of neighboring features, meaning that a cell with high
values of premises needs to be surrounded by other cells with high values
to be a statistically significant hot spot. In addition, descriptive statistics
such as the mean count of premises in each cell, number of hot spots,
and the mean number of premises in the hot spots were also calculated.

Spatial and space-time analysis. In order to visualize the
distribution of IBV cases in California during the study period, each
positive case was spatially associated with the company performing the
submission. All cases were mapped using this approach. To investigate
statistically significant IBV clusters in space and time, a STPM was
performed using SaTScanTM version 9.1.1 (National Cancer Institute,
Bethesda, Maryland, USA). Using the location of the company
submitting laboratory samples, we fit the models by comparing the
numbers of observed cases in a given cluster with the number of
expected cases, with the assumption that the spatial and temporal
locations of all cases have no space-time interaction (i.e., independent in
time and space). The analyses were executed considering a daily,
monthly, and yearly time aggregation for cluster length. Finally, to
explore the spatial and spatial-temporal clusters in a single analysis at the
genotype level, a multinomial scan analysis was performed via SaTScan
(National Cancer Institute). Specifically, the analysis included the
genotypes Cal99 and CA1737, the vaccine-related strains Conn and
Mass (i.e., Vacc), and the NA cases. The statistical significance of ‘‘most
likely clusters’’ (i.e., clusters that are least likely due to chance) in all the
models fitted were evaluated through Monte Carlo simulations (999
replications), and P values ,0.05 were considered statistically significant
to reject the null hypothesis of random distribution in time or space.
The maximum spatial cluster size was set at 50% of the population at
risk.

RESULTS

A total of 798 premises were included in the OHS analysis to
describe the spatial distribution of poultry premises in California

and to investigate the presence of high-density clusters (Table 1;
Figs. 1, 2). The area of each polygon created in the fishnet mesh
during the OHS analysis was 9.57 km2, with a total of 240 polygons
and a mean count of premises per polygon of 3.325 (SD, 4.17;
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range, 1–33). The OHS analysis was able to detect 47 statistically

significant polygons (P , 0.01, n ¼ 44; P , 0.05, n ¼ 3)

constituting one hot spot area located in the central valley of

California (Figs. 1, 2). The area has a mean of 7.34 premises per

polygon (SD, 7.15; range, 1–33) and an area of 56.37 km2.

Among the 131 IBV-related cases included in the study, genotypic

identification was performed on a total of 88 cases (Table 1).

Ninety-seven percent of the cases represented broilers (n¼127, 95%

CI ¼ 91.8–99) and 3% represented layers (n ¼ 4, 95% CI ¼ 0.9–

8.1).

The STPM identified six space and time clusters (Table 2),

including three that were statistically significant (P , 0.01). All

three significant spatial-temporal clusters were detected in at least

two time-extent aggregations, with durations of 131, 65, and 179

days and radii of 15.78, 33.87, and 32.25 km, respectively (Table 2).

The odds ratios (i.e., ratio between observed and expected cases)

among the significant clusters were 6.75, 4, and 2.27, respectively.

Broiler premises were predominant in all the significant clusters

obtained in the STPM analysis (Table 2).

With respect to the identification of spatial-temporal clusters by

using the multinomial model, results showed significant clusters for

different IBV types during the study period (Table 3). Specifically,

the spatial-temporal analysis showed two statistically significant

clusters (P , 0.01). In the first cluster (i.e., cluster 1 from the

spatial-temporal analysis), the category Vacc had the highest relative

risk (2.68) within the different genotypes of IB (Table 3). However,

Cal99 (n¼ 7) was the most predominant in the cluster with respect

to the total number of cases (Table 3). In contrast, the second

significant spatial-temporal cluster (i.e., cluster 2 from the spatial-

temporal analysis) was conformed only by NA cases (Table 3). With

respect to the spatial analysis, two clusters and one statistically

significant cluster was obtained (P , 0.01), and it had Cal99 and

Vacc (Conn and Mass) as its more predominant genotypes and had

the highest relative risk.

With respect to the identification of spatial clusters by using the

multinomial model, results showed two clusters with only the

second cluster being statistically significant (P , 0.05) (Table 3).

Within this cluster, the Vacc genotype had the highest relative risk

(2.55) (Table 3). However, Cal99 was the most predominant in the

cluster, with respect to the total number (n¼ 29) of cases (Table 3).

In both analyses, broiler farms were the most represented in all the

significant and nonsignificant clusters (Table 3).

DISCUSSION

Due to its economic and poultry health impact, IB is a well-

studied disease in poultry (1,12,26). In contrast, the spatial

epidemiology of IB is not well studied, especially in contrast to

other poultry diseases including avian influenza (15). The ability to

identify statistically significant spatial, temporal, and spatial-
temporal clusters of infectious disease is an important tool in public
health, disease surveillance, and food security (15,21). With the
advent of mapping tools and space-time disease surveillance
software, timely retrospective analyses of disease outbreaks can be
accomplished with little or no cost. Among the commonly used
space-time disease surveillance tools, which include ClusterSeer,
SaTScan, Geosurveillance, and the surveillance package for R, we
selected SatScan due to its open-source nature, ease of use, well-
referenced methodologies section, and the variety of analyses tools
available (13,14,24).

In this paper, we explored several spatial statistic approaches in
order to explore practical ways to facilitate the identification of
clusters of IB. Specifically, based on previous efforts in mapping
infectious diseases, combined with the high variability of IB
genotypes noted in California (8), STPM and multinomial models
were identified as appropriate retrospective tools to properly identify
spatial-temporal clustering of IB during the study period (5,23).
These spatial-temporal statistic tools are helpful in identifying both
geographic locations and times of year in which IB variants are most
likely to occur.

Using the space-time permutation, we found statistically
significant clusters under three time aggregation windows (day,
week, month, year; day, week; and month, year) (Table 2). This
demonstrates the utility of using the time window at multiple
temporal scales.

Clusters number two and six overlapped each other in both time
and space (Table 2; Fig. 1). One limitation of the time-space
permutation is that there is no specificity as to the IBV genotype.
Specifically, we cannot identify if Cal99 or the Vacc cluster (i.e.,
Conn and Mass), for example, is the primary cause of the cluster.
Hence, without genotypic information, it is more difficult to
understand the interrelatedness of outbreaks that overlap in space
and time (i.e., cluster number 2 and 6 in Table 2; Fig. 1).
Therefore, an understanding of the clustering patterns of the
different IBV variants known in California (8) is not captured.
This is particularly important with IB, because vaccine strains are
commonly identified in poultry houses in addition to wildtype
strains. Hence, we explored this by using spatial-temporal and
spatial analyses via a multinomial model, which, by definition,
allow for the categorization of the different IB genotypes (Fig. 2;
Table 3).

Using this approach, we identified two significant spatial-
temporal clusters and one significant spatial cluster (Table 3; Fig.
2). With respect to genotype, results showed that in cluster 1 on the
spatial-temporal analysis and cluster 2 of the spatial analysis, the
vaccine strains had the highest relative risk (Table 3), meaning that
more cases of IB associated with the vaccine strain are observed than
expected. Consequently, it appears that the vaccine strain has a more
significant impact than what was expected. In addition, these clusters
(e.g., cluster 1 from the spatial-temporal analysis and cluster 2 from
the spatial analysis of Table 3) are roughly analogous in space and
time to clusters 2 and 6 in Table 2 (i.e., the STPM). Because both
clusters were both primarily associated with high relative risks for the
vaccine-like strains, this brings up the likelihood that both models
detected similar clusters.

Although there was more than one genotype in each cluster, it is
important to note that significant relative risks were found only for
one IB genotype (Table 3) for each cluster. Following the vaccine
strain, the NA strains (e.g., cases without information or Genbank

Table 1. Genotypic distribution of the 133 IBV cases used in this
study in California between 2008 and 2012.

IBV genotype n % 95% CI

Cal99 63 48.1 39.3–56.9
CA1737 4 3.1 0.9–8.1
Conn 18 13.7 8.5–21.1
Mass 3 2.3 0.6–7.1
NA 43 32.8 25.02–41.6
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matches) had the next highest relative risks. The California

genotypes Cal99 and CA1737 had relative risks below 1 (i.e., they

were seen less than expected) for every cluster except for cluster 2 of

the spatial analysis, where it was just above 1 (1.34) (Table 3). With

respect to the NA strains, they include more than one genotype that

do not match GenBank sequences. Hence, further analysis of those

NA genotypes would be required to evaluate the genetic variability

of each genotype.

Fig. 1. Clusters of IBV in central California obtained by the STPM by using day, month, and year as time aggregation (2008–2012) and OHS
analysis of poultry producers in California. Producer’s locations were mapped in 9.6-km2 grids. Additional information regarding each cluster can be
found in Table 2.
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For IB disease surveillance, the above insights regarding the

vaccine-like viruses demonstrate the inherent advantage of multi-

nomial models with respect to the identification of different

genotypes of IB. Specifically, in addition to the geographic and

temporal parameters of an IB outbreak, genotypic information can

also be provided to help facilitate response efforts. One interesting

potential disadvantage of the multinomial model in this study is that

the geographic areas and time periods where clusters were identified

Fig. 2. Spatial-temporal and spatial clusters fitted by a multinomial model for a given variant of IBV in California (2008–2012) and OHS
analysis of poultry producers in California. Producer’s locations were mapped in 9.6-km2 grids. Additional information regarding each cluster can be
found Table 3.
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were much larger spatially and, in one case, temporally (i.e., 4 years
for spatial cluster 2 from the multinomial model in Table 3), than
the corresponding geographic areas for the space-time permutation
(Table 2). This could be because the multinomial model evaluates
whether there are any clusters where the distribution of cases
(distribution of categories, in our case, distribution of IB types) is
different from the rest of the study region, whereas the STPM model
compares the observed cases to what would have been expected if the
spatial and temporal locations of all cases were independent of each
other.

One potential approach toward future analysis of IB outbreaks
could be to use the multinomial models to identify the clusters of
disease and then use the space-time permutation to better
understand geography and time. This would narrow down the time
and space frames in addition to providing relevant genotypic data.

The secondary objective was to qualitatively understand the
relationship between farm density and clusters of IBV. Of the three
significant space-time permutations, only one of the clusters was
geographically located in an area of high poultry farm density, as
identified by hot-spot analysis (Figure 1). Likewise, with respect to
the multinomial models, only one of the three statistically significant
clusters (spatial-temporal cluster 2) was spatially centered near the
highest density farm areas, as determined by the hot-spot analysis
(Figure 2). These results most likely reflect the reality that other
factors (e.g., roads, wind, and biosecurity practices) in addition to
farm density contribute to clustering of disease. Further studies
integrating these types of variables in addition to geography should
be considered as a next level of analysis, with the goal of clarifying
the root causes of the outbreak.

Unfortunately, of the 1444 IBV cases identified, only 131 (9.1%)
contained address information. Hence, over 90% of the data was not
analyzed spatially. This could result in some type of selection bias
(e.g., companies that do or do not fill out the complete address
information on the submission form). An additional limitation of
the current study is that there is no specific information provided as
to the vaccines that were used. In California, although commercial
egg-layer premises use Mass, Conn, and Arkansas (Ark) IBV vaccines
during the rearing period and sometimes during production, broiler
premises may use Mass and Conn, many premises have been
migrating away from field vaccination and even hatchery priming
(C. Corsiglia, pers. comm.). This is interesting because, as we move
away from vaccine boosters in broilers, we have noted that IBV
outbreaks tend to spread in time and are usually linked with the use
of Ark vaccines in egg layer-facilities (R. Gallardo, pers. comm.).
The data set analyzed reflect stationary problems that might be
associated with the use of certain vaccine strains (Table 3; Fig. 2).
Specifically, this was reflected in two of the three significant
multinomial clusters where the vaccine strains had the highest risk

ratios (i.e., were found more often than expected). Because the use of

certain vaccine types (i.e., Ark DPI) promotes the generation of even

more variants (8), this type of epidemiologic analysis is important to

help facilitate better decision making with respect to vaccine

strategy. Further sequence analysis of the NA strains would be

interesting to investigate their genetic relationship to Ark. Other

pieces of information that were not provided for the analysis that

could affect the results are the relationship each premise has with

other premises, including ownership, shared equipment, and crews,

and husbandry practices. If available, a much more robust model

could be developed that would include the significance of geographic

and nongeographic variables via a geographically weighted regres-

sion.

From a practical perspective, other infectious respiratory poultry

diseases could be analyzed in a retrospective fashion in order to

Table 2. Clusters of IBV in central California obtained by the STPM by using day, month, and year as units of time aggregation (2008–2012).

Cluster Time aggregation
Radius
(km)

No. of producers
(broilers/layers) Start date End date P value Cases Expected Cases/Expected

1A Day, week, month, year 15.78 20/1 May 10, 2011 Sep 21, 2011 0.0004 9 1.33 6.75
2A Day, week 33.87 24/2 Nov 17, 2008 Jan 22, 2009 0.0031 13 3.25 4
3 Day, week, month 14.94 9/1 Sep 27, 2011 May 1, 2012 0.301 8 1.76 4.55
4 Day 0.34 4/0 Dec 19, 2008 Dec 19, 2008 0.436 2 0.039 51.11
5 Day, week, month 5.71 12/10 Jan 11, 2010 May 4, 2010 0.954 3 0.24 12.6
6A Month, year 32.25 60/2 Oct 1, 2008 Apr 30, 2009 0.0031 27 11.87 2.27

AStatistically significant clusters.

Table 3. Spatial-temporal and spatial cluster fitted by a multinomial
model for a given variant of IBV in California (2008–2012). The
relative risk (RR) is reported for each genotype.

Category Observed Expected Observed/Expected RR

Spatial-temporal analysis
Cluster 1, from 1/10/2009 to 2/3/2009A

CA1737 4 0.52 7.71 n/a
Cal99 7 8.18 0.86 0.84
NA 0 5.58 0 0
Vacc 6 2.73 2.2 2.68

Cluster 2, from 3/20/2012 to 11/12/2012B

CA1737 0 0.46 0 0
Cal99 0 7.21 0 0
NA 15 4.92 3.05 4.14
Vacc 0 2.4 0 0

Spatial analysis
Cluster 1, from 8/1/2008 to 12/31/2008C

CA1737 0 1.98 0 0
Cal99 28 31.26 0.9 0.81
NA 31 21.34 1.45 2.62
Vacc 6 10.42 0.58 0.41

Cluster 2, from 8/1/2008 to 12/31/2012D

CA1737 4 1.56 2.57 n/a
Cal99 29 24.53 1.18 1.34
NA 5 16.74 0.3 0.21
Vacc 13 8.18 1.59 2.55

AP , 0.01; Number of producers in the cluster,
broilers/layers ¼ 122/2.

BP , 0.01; Number of producers in the cluster,
broilers/layers ¼ 41/6.

CP ¼ 0.069; Number of producers in the cluster,
broilers/layers ¼ 108/41.

DP , 0.01; Number of producers in the cluster,
broilers/layers ¼ 106/4.
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identify clusters of disease and advise the poultry industry about

where biosecurity efforts should be focused in the future. In

addition, the multinomial clustering models can be used to select

appropriate IB vaccine types based on the genotypic risk ratios

provided in the analysis (Table 3). Open source spatial analysis tools

should be seen as complementary tools in order to better understand

outbreaks, with the goal of using the combined data to mitigate

outbreaks, focus surveillance efforts, and understand spatial-

temporal transmission. In the future, at the state and university

level, an extension of these types of analyses could be incorporated

into infectious disease investigations in poultry in order to better

inform relevant stakeholders about IB transmission and how best to

respond.
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Abdelnabi, P. R. Woolcock, R. Hauck, and H. Toro. Variability assessment
of California infectious bronchitis virus variants. Avian Dis. 60:424–429.
2016.

9. Getis, A., and J. K. Ord. The analysis of spatial association by use of
distance statistics. Geogr. Anal. 24:189–206. 1992.

10. Hauck, R., R. A. Gallardo, P. R. Woolcock, and H. L. Shivaprasad.
A coronavirus associated with runting stunting syndrome in broiler chickens.
Avian Dis. 60:528–534. 2016.

11. Jackwood, M. W., D. A. Hilt, C.-W. Lee, H. M. Kwon, S. A.
Callison, K. M. Moore, H. Moscoso, H. Sellers, and S. Thayer. Data from

11 years of molecular typing infectious bronchitis virus field isolates. Avian
Dis. 49:614–618. 2005.

12. Jackwood, M. W., D. A. Hilt, S. M. Williams, P. Woolcock, C.
Cardona, and R. O’Connor. Molecular and serologic characterization,
pathogenicity, and protection studies with infectious bronchitis virus field
isolates from California. Avian Dis. 51:527–533. 2007.

13. Kulldorff, M. SaTScan_Users_Guide. SaTScan, 2018. https://www.
satscan.org/cgi-bin/satscan/register.pl/SaTScan_Users_Guide.pdf?
todo¼process_userguide_download

14. Kulldorff, M., R. Heffernan, J. Hartman, R. Assunção, and F.
Mostashari. A space-time permutation scan statistic for disease outbreak
detection. PLoS Med. 2:e59. 2005.

15. Loth, L., M. Gilbert, J. Wu, C. Czarnecki, M. Hidayat, and X.
Xiao. Identifying risk factors of highly pathogenic avian influenza (H5N1
subtype) in Indonesia. Prev. Vet. Med. 102: 50–58. 2011.

16. Martin, M. P., P. S. Wakenell, P. Woolcock, and B. O’Connor.
Evaluation of the effectiveness of two infectious bronchitis virus vaccine
programs for preventing disease caused by a California IBV field isolate.
Avian Dis. 51:584–589. 2007.

17. McKinley, E. T., M. W. Jackwood, D. A. Hilt, J. C. Kissinger, J. S.
Robertson, C. Lemke, and A. H. Paterson. Attenuated live vaccine usage
affects accurate measures of virus diversity and mutation rates in avian
coronavirus infectious bronchitis virus. Virus Res. 158:225–234. 2011.

18. Mitchell, A. The ESRI guide to GIS analysis: geographic patterns &
relationships. ESRI Press, Redlands, CA USA 2005.

19. Mondal, S. P., and C. J. Cardona. Genotypic and phenotypic
characterization of the California 99 (Cal99) variant of infectious bronchitis
virus. Virus Genes 34:327–341. 2007.

20. Moore, K. M., J. D. Bennett, B. S. Seal, and M. W. Jackwood.
Sequence comparison of avian infectious bronchitis virus S1 glycoproteins of
the Florida serotype and five variant isolates from Georgia and California.
Virus Genes 17:63–83. 1998.

21. Muellner, P., J. C. Marshall, S. E. F. Spencer, A. D. Noble, T.
Shadbolt, J. M. Collins-Emerson, A. C. Midwinter, P. E. Carter, R. Pirie,
D. J. Wilson, D. M. Campbell, M. A. Stevenson, and N. P. French.
Utilizing a combination of molecular and spatial tools to assess the effect of a
public health intervention. Prev. Vet. Med. 102:242–253. 2011.

22. Ord, J. K., and A. Getis. Local spatial autocorrelation statistics:
distributional issues and an application. Geogr. Anal. 27:286–306. 1995.

23. Park, R., T. F. O’Brien, S. S. Huang, M. A. Baker, D. S. Yokoe, M.
Kulldorff, C. Barrett, J. Swift, J. Stelling, and Centers for Disease Control
and Prevention Epicenters Program. Statistical detection of geographic
clusters of resistant Escherichia coli in a regional network with WHONET
and SaTScan. Expert Rev. Anti. Infect. Ther. 14:1097–1107. 2016.

24. Robertson, C., and T. A. Nelson. Review of software for space-time
disease surveillance. Int. J. Health Geogr. 9:16. 2010.

25. Schikora, B. M., L. M. Shih, and S. K. Hietala. Genetic diversity of
avian infectious bronchitis virus California variants isolated between 1988
and 2001 based on the S1 subunit of the spike glycoprotein. Arch. Virol.
148:115–136. 2003.

26. Sjaak de Wit, J. J., J. K. A. Cook, and H. M. J. F. van der Heijden.
Infectious bronchitis virus variants: a review of the history, current situation
and control measures. Avian Pathol. 40:223–235. 2011.

232 O. Alejandro Aleuy et al.


