

Mite Pests & Effects of Pesticides on Predators

Anna D. Howell (UCCE-Ventura County)

Lewis Spider Mite

Lewis spider mite (Eotetranychus lewisi)

- Pest on strawberry & raspberry
- Found on poinsettias, lemon, peach, & castor bean
- Present in fall & summer strawberries

Lewis spider mite

<u>Identification</u>

- Adults & immatures
 - Oval, yellow-green
 - Multiple spots, mainly on sides
 - Slightly smaller than TSSM
- Light/medium webbing
- Eggs are clear & spherical

Willamette mite egg (F. Zalom)

Development

- Temperature & photoperiod dependent
 - Occurs when temp. is >53.1°F or <104°F
- A single female can start a colony
 - **This is why monitoring is SO important**

Damage

- Leaf stippling
- Browning of leaves
- Leaf drop / defoliation
- Stunting
- Webbing attracts dust & can change transpiration

UC University of California Agriculture and Natural Resources Cooperative Extension

Management

- Timing & type of sprays will depend on infestation level & amount of beneficials
- Spray only when necessary, monitor after to catch outbreaks
- Rotate MOA's to slow development of resistance
 - **Always consult the current label for use recommendations**

Broad Mite

Broad Mite (*Polyphagotarsonemus latus*)

<u>Identification</u>

- 0.1-0.2mm length
- Translucent yellowish to greenish
 - P's have a stripe down their back
- J's carry P's
- Eggs are flat-oval with dots

Development

- Like warm & humid conditions
- 5 − 21 days to go from egg ⇒ adult
 - Temperature & relative humidity dependent
- 4 life stages: Egg ⇒ larva ⇒ larva ⇒ adult

Feeding

- Found on numerous crops including caneberries
- Found & feed in buds, internodes, depressions on fruit
- Inject toxins into plant cells while feeding

Damage

- Leaf distortion, curling, bronzing
- Terminal dieback
- Reduced terminal leaf growth
- Initial symptoms may mimic spray burn

UC University of California Agriculture and Natural Resources Cooperative Extension

Management

- Chemical
 - Coverage is key, but may be difficult
- Biological control
 - N. californicus, N. fallacis, A. andersoni, Stethorus
- Pruning may help decrease future populations, but needs to be studied

Basics on Predatory Mites

TSSM	TSSM, Lewis, Broad	TSSM, Lewis, Broad
P. persimilis	N. californicus	A. andersoni
	N. fallacis	A. swirskii
	Galendromus occidentalis	N. cucumeris

Releasing methods

**ALWAYS Check activity of mites

before releasing**

You should see active mites congregating near the ventilated area (top/bottom of the bottle)

Releasing methods

Some leaves may need a squirt of water to keep the carrier/mites from falling

onto the ground

Sachets for slower mite releases can also be used

How do miticides affect predatory mites?

Incorporation requires knowledge & understanding of interactions with crop management practices

- Environment can affect control efficacy
 - Temperature, humidity, prey & other food sources, crop type, pesticides

Bioassays

Temp: 80 °F ± 1 °F

% RH: 60-65%

16:8 hr (L:D)

RCBD in envir. chamber

4-5 Reps

Corrected Percent Mortality

Days After Treatment (DAT)

Fecundity (# eggs produced)

Fertility (# young produced)

Live predators

Harsh on *P. persimilis*: Fujimite

<u>"So-so" on *P. persimilis:*</u> Nealta

"Softer" on *P. persimilis:*Acramite & Kanemite

Corrected Percent Mortality

Fecundity (# eggs produced)

Fertility (# young produced)

Live predators

Corrected Percent Mortality

Fecundity (# eggs produced)

Fertility (# young produced)

Live predators

Harsh on *N. californicus*: Zeal, Oberon, Fujimite, Agri-Mek

"So-So" on *N. californicus*:
Nealta

"Softer" on *N. californicus*: **Acramite**, **Savey**, Kanemite

Summary

- Early monitoring to prevent outbreaks
- Know your mites!
 - Differences in treatment between mites both chemically and biological control
- Use softer chemistries to preserve beneficials

Acknowledgements

Darin Allred (Arysta LifeSciences)
Kate Walker (BASF)
Associates Insectary

Questions?

