Understanding Blossom End Rot in Tomatoes and Peppers

Elizabeth Mitcham
Department of Plant Sciences
UC Davis

Ca⁺⁺ deficiency in plants

Bitter pit apple

Black heart Celery

Tip burn lettuce

Blossom-end rot tomato

Blossom-end rot pepper

Cracking tomato

Blossom-end rot watermelor

Similarities of Blossom End Rot to Bitter Pit

- Related to Ca deficiency, but incidence is not well related to Ca levels in individual fruit
- Induced by stress, such as water stress
- Initial symptoms at membrane with leakiness, then cell deterioration

Bitter Pit

Blossom-End Rot

Timing of BER Development

- Susceptibility:
 - Early development: 1/2 to 1/3 full fruit size in tomatoes
 - Uneven irrigation
 - Weather extremes
 - Sandy/quick draining soils
- No cure for tomato or pepper with BER
 - Consider removing affected fruit to conserve plant energy
 - Calcium spray may help with BER reduction in subsequent fruit
- BER incidence may decline as season progresses
- https://docs.google.com/file/d/ OB7wlCd3B4SOMYWZDdXZGdU9ocUU/ edit?usp=drive_web

Role of Ca⁺⁺ as a Nutrient

- Plant responses to biotic and abiotic signals
- Membrane structure
- Cell wall structure
- Charge balance inside vacuole

Factors that Influence Calcium Deficiency Development in Fruit

- 1. Calcium uptake to the fruit
 - a) Not enough calcium in soil
 - b) Plant cannot take up enough Ca
- 2. Calcium localization within fruit cells

Ca⁺⁺ deficiency Blossom-end Rot

History of Ca⁺⁺ deficiency in apple/tomato

- 1869: first mentioned as a problem
- 1956: relationship disorder with Ca⁺⁺ content
- 1962: spraying Ca⁺⁺ reduces the disorder
- 1962 today: mechanism not well understood

Is Ca⁺⁺ deficiency always caused by low total Ca⁺⁺ content in the tissue?

Answer: No!!!

Calcium Location, Location

- The activity of Ca transporters between cellular compartments can affect the Ca available for membrane stability to reduce calcium deficiency disorders
- Studies in tomato showed that increasing the expression of Ca²⁺ transporters in the vacuolar membrane can increase the levels of calcium in the fruit, but can also increase the incidence of blossomend rot (PARK et al., 2005)

Main hypothesis

Vacuole and Ca⁺⁺ homeostasis in plant cell

Figure. Calcium in plant cells. White & Broadley, 2003.

Gibberellins Stimulate Proteins that Pump Calcium into the Vacuole

Result is less calcium in the cell wall and apoplast

Tomato fruits 31 DAP

Water

GA 4+7

Blossom-end rot incidence in tomato plants cultivar Ace sprayed weekly with water or GA4+7 (300ppm) (A). Calcium concentration (B), ion leakage analysis (C), and expression level of putative Ca⁺⁺/H⁺ genes (D) at the blossom-end pericarp tissue of tomato fruit without visual symptoms of BER at 31 days after pollination.

Increased Calcium Levels and Prolonged Shelf Life in Tomatoes Expressing Arabidopsis H⁺/Ca²⁺ Transporters¹

Sunghun Park*, Ning Hui Cheng, Jon K. Pittman², Kil Sun Yoo, Jungeun Park, Roberta H. Smith, and Kendal D. Hirschi

Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845 (S.P., K.S.Y., J.P., R.H.S., K.D.H.); and Plant Physiology Group, United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030 (N.H.C., J.K.P., K.D.H.)

Cellular regulation of Ca²⁺ partitioning/distribution

Total Ca⁺⁺ content at the blossom-end of wild type and increased CAX1 tomato fruit four weeks after pollination.

Storing calcium in the vacuole increases blossom end rot

*Tomatoes expressing CAX1, an Arabidopsis Ca2+/H+ antiporter

Abscisic Acid is a Natural Plant Hormone

- Growth inhibitor
- Induced by stress conditions
- Causes stomates to close
 - Reduces water loss and photosynthesis

Cultivar Ace – 140 days after seed germination

Fruit [Ca^{2+]} – 45 DAP

Apoplastic [Ca²⁺]

Leaf [Ca²⁺]

Conclusions

- ABA prevents BER development in tomato
- Increases plant water and Ca use efficiency
- Ca⁺⁺ accumulation in ABA treated fruit cannot be fully explained by xylemic water uptake driven by fruit transpiration and growth

Analysis of Xylem Sap Calcium and Flow Rates in Tomato

Determine the effect of ABA on:

- Ca concentration during fruit growth and development
 - in the stem xylem sap
 - in the leaf xylem sap
 - in the fruit xylem sap
- Xylem sap flow rate during fruit growth and development
 - in the stem
 - in the leaf
 - in the fruit
- Plants treated with ABA as a whole (spray) and fruit only (dip)

Extraction of Xylem Sap

(Schurr, 1998)

Ca Concentrations and Sap Flow Rates

Ca concentration in the xylem sap

Ca concentration in leaf and fruit tissue

Xylem sap flow rate in the stem, leaf peduncle, and fruit peduncle will be measured with a heat pulse technique utilizing an external sap flow sensor

ABA had both whole plant and fruit specific effects

Leaf Specific Effects

Water spray

ABA spray

Water dip

Α

400

ABA Spray Reduced Sap Flow to Leaves

ABA Spray
Increased Sap
Flow to Fruit

Fruit Dip also had a smaller increase in sap flow

There were also fruit specific effects on reducing BER, unrelated to spray effects

Influence of ABA on Blossom End Rot

- 1. Water stress increases BER because more water goes to leaves than fruit
- 2. Plants with greater production of ABA under stress will close the stomates and increase water flow to the fruit.
- 3. May explain variable susceptibility among varieties.

Plant Responses to its Environment Result in Shifts in Hormone Levels that can Promote Blossom End Rot

How can this knowledge help?

- 1. Information used to breed resistant varieties
- 2. Develop better management practices

Factors that Influence Blossom End Rot Development Fruit

- 1. Calcium uptake to the fruit
 - a) Not enough calcium in soil
 - a) California soils generally have enough
 - b) Calcium sprays may help
 - b) Plant cannot take up enough Ca
 - a) Mg, K, ammonia nitrogen compete with calcium for uptake
- 2. Calcium localization within fruit cells
 - a) Hormone effects

Soil and Moisture Management

- Avoid extreme fluctuations in soil moisture
 - Don't let soil get completely dry early in season
 - Irrigate before periods of high heat
 - Compost or mulch may help regulate soil moisture
- Test soil for salt, calcium, and other nutrients
 - Saline soils lead to more BFR
- Avoid excessive nitrogen application
 - Use nitrate source instead of ammonia, ammonia reduces Ca uptake
- Limit cultivation to protect roots

Additional Resources

General BER practical reference:

Managing Blossom-End Rot in Tomatoes and Peppers. UCANR, Placer County. 2010.

http://ucanr.edu/sites/placernevadasmallfarms/files/86509.pdf

Other resources:

UC Small Farm Program http://sfp.ucdavis.edu/
Soil testing recommendations/guidelines

UC Davis Postharvest Technology Center

http://postharvest.ucdavis.edu/

Produce factsheets
Workshops/short courses

The World's Premiere Source of Postharvest Information:

http://postharvest.ucdavis.edu

Produce Facts

Postharvest Libraries

The Postharvest Libraries contain a wide range of materials for free download (pdf format) and useful links. The content is presented in either searchable databases or in a list by subject. Please direct inquiries regarding the Postharvest Libraries to postharvest@ucdavis.edu.

<u>Postharvest Publications and Presentations by Topic</u> A database containing over 1,300 articles and presentations authored by UC postharvest specialists, USDA postharvest researchers, and others. The database is organized by topic and searchable. Download in pdf format.

<u>Postharvest Video Library.</u> A collection of free postharvest videos created by UC postharvest specialists and others.

<u>Small-Scale Postharvest Practices A Manual for Horticultural Crops.</u> This manual by Lisa Kitinoja and Adel Kader is available for download (PDF format), free of charge, in 10 languages.

Postharvest Technology for Fruit & Vegetable Produce Marketers: Economic Opportunities, Quality & Food Safety. This book provides recommendations for harvesting, handling, storing, processing and marketing a wide variety of crops,

UC ANR Postharvest Publications. A collection of free postharvest publications created by UC postharvest specialists and others.

worldwide. By Lisa Kitonoja and James Gorny (1998)

Selected Postharvest References. A list of selected references on 'postharvest handling and physiology of horticultural crops', published in 2001 with periodic addendums through 2010.

Content-rich
web site
averages over
3 million views
annually, and
encompasses
more than 600
pages and
750 PDF
documents.

Questions?