Assessments of Ripeness:

Anita Oberholster

On-the-Road in the Foothills: February 27, 2015

Introduction

- Physiological changes during ripening
 - Seeds, skins, pulp
- Compositional changes during ripening
 - Sugars, organic acid, minerals, aroma and phenolic compounds

Berry growth phases

Fig. 10.3. Developmental stages of the grape berry: B, bloom; BS, berry set; V, véraison; H, harvest

Berry growth phases

- During maturation both physical and chemical changes
 - 1st growth phase
 - Accumulation of minerals, amino acids, micronutrients and aroma compounds (methoxypyrazines)
 - Accumulation of compounds with max around véraison
 - Tartaric and malic acid
 - Hydroxycinnamic acids
 - Phenols/Tannins

Phenols in grapes Vitis vinifera

- During maturation both physical and chemical changes
- Veraison
 - Marks beginning of ripening
 - Berry softening
 - Cell wall deterioration
 - Cellular multiplications and enlargement without proportional increases in parietal polyosides (cement)
 - Changes in skin color
 - Start of anthocyanin (red color) accumulation
 - Translucent skin in white varieties

- Veraison
 - Marks beginning of ripening
 - Sugar accumulation
 - Rapid increase in glucose and fructose
 - Organic acid decline
 - Rapid decrease in mostly tartaric and malic acid
 - Slower tartaric than malic acid decrease

Phenylpropanoid pathway in the grape berry (Koyama *et al.,* 2012)

Figure 8 The biochemical pathway to the major flavonoids found in grape berries. Compounds that accumulate in the fruit are outlined by rectangles and the intermediates are present at very low levels.

Main Flavonoids

FlavonolQuercetin-glucuronide Quercetin-glucoside

Anthocyanin Malvidin-3-glucoside

> Flavan-3-ol Catechin Epicatechin

Proanthocyanidins

Adams (2006), AJEV 57:3

Differences between seed and skin tannins

- Skin tannin
 - mDP ~ 30
 - Little epicatechin-gallate
 - Contains epigallocatechin
- Seed tannin
 - mDP ~ 10
 - Contains more epicat-gallate units
 - No epigallo units

Prieur *et al.* (1994) Phytochem. 36, 781-784. Souquet *et al.* (1996) Phytochem 43, (2), 509-512.

- The study of berry compositional changes during maturation is difficult due to extreme berry variability
- However, in general:
 - Seeds (0 6 % of weight)
 - With maturation increase in [phenol] and [tannin]
 - Reach maximum before veraison per berry
 - Post-veraison mDP of tannin decrease
 - Post-veraison seed drying and browning
 - Post-veraison tannin covalently bonded to lignified cell layers

- Skins (8-20% of berry weight)
 - Skin phenolics
 - Flavonol synthesize starts at flowering and 1-2 weeks after veraison until ripe
 - Anthocyanins increase from véraison until ripe
 - In overripeness anthocyanins may decrease due to degradation of the grape skin
 - Skin tannin per berry increase until approx. 2 weeks after veraison, then constant
 - Skin tannin conc may decrease due to berry growth
 - Post-veraison mDP increase
 - In general in the whole berry: mDP decrease, tannin (mg/berry) decrease

- Skins (8-20% of berry weight)
 - Contains significant amounts of:
 - Aromatic substances
 - » Bound and free monoterpenoids increase from veraison with maturation
 - » Some decrease with over ripening

– Muscat, Gewürtztraminer

- Skins (8-20% of berry weight)
 - Contains significant amounts of:
 - Aromatic substances
 - Carotenoids in skins decrease with maturation with increase with carotenoidderived volatiles such as norisoprenoids
 - » »

) amascenone

Vitispirane

» Vitispirane (green odor of chrysanthemum, flowery-fruity note)

- Skins (8-20% of berry weight)
 - Contains significant amounts of:
 - Aromatic substances
 - » Methoxypyrazines high conc in unripe grapes
 - Decrease with maturation (light and temp)
 - Highest conc found in coldest maturation conditions

Methoxypyrazines (vegetative, herbaceous, bell pepper or earthy aroma)

» 2- isobutylmethoxypyrazine (IBMP), 3butylmethoxy-pyrazine, 3isopropylmethoxypyraxine

isobutylmethoxypyrazine

OCH₃

- Pulp (75-85% of berry weight)
 - Contains significant amounts of:
 - Cell walls (<1%)
 - Sugars (fructose and sucrose, 0.9 ratio)
 - Acids (tartaric, malic and citric acid)
 - Cations (K, Ca, Mg, Na, Fe)
 - Amino acids (proline, arginine, theanine, glutamic acid) 20-25% tot N2 content
 - Aroma compounds (alcohols, aldehydes, esters)

Pulp:

- During maturation
 - Decrease in [organic acids]
 - Synthesized until veraison, constant
 - K⁺ increase with sugar during maturation
 - N₂ increase from berry set until mid-maturity

Berry maturation and optimal ripeness

- Definition of maturity varies
- Optimal ripeness can be defined as the optimal berry composition for your wine style
- Technological Maturity: Sugars and acidity
- Phenolic Maturity: Sugar, tartaric acid and phenolic compounds
 - Optimum phenolic composition for obtaining a specific wine style
- Aromatic Maturity: Sugar, TA and aroma profiles - White grapes

Determination of grape (phenolic) maturity

- Inspection of skins, connection to the pulp
- Tasting grape skins for specific flavors
- Investigating the seed color

Seed color chart

Figure 2. A colour chart indicating changes in grape seed coat colour during seed development and maturation.

Calculating Grape Seed Colour

Take a random sample of at least 20 seeds from a representative sample of berries.

Measurement of phenolic maturity (optimal phenolic composition)

- Extractability assay
 - Color extracted at grape pH and pH 1 (breaks down cell structure). Sudden decrease indicate over ripeness (Ribéreau-Gayon et al., 2000)
- Color intensity (520 nm) (Iland et al., 2000)
 - Correlation with anthocyanins and quality
 - Winescan good correlation (r² > 0.8)

Ribéreau-Gayon et al., (2000) Iland et al,. (2000)

Determine opt ripeness in Cab Sauv grapes~wine quality

- Strong relationship between 'Brix, color and grape and wine quality
- Seasonal differences result in larger variance then vineyards in different climatic zones

Importance of 280:520 nm or tannin/anth ratio?

- Ratio tannin/anth mostly between 1 and 3 for best wines
- Large variance over years and between farms
- Kassara and Kennedy found best rated wine had tannin:anth ratio of ±2
 - Higher rated wines larger contribution
 from skin tannins
 - Wine color generally increased with tannin conc

Oberholster, Botes, Lambrechts (2010), J. Int. Sci. Vigne Vin. Special issue Macrowine, 33-40. Kassara and Kennedy (2011) J. Agric. Food Chem. 59: 8409-8412.

Phenol extraction

Effect of the climate and environment on berry ripening/content

- Seasonal differences results in large grape composition difference
 - sugar ±10%
 - acid content ± 30-40%
 - up to two-fold variability in tannin + anth content

- In vineyard more skin tannins
 - Reduced vigor and vine water status

Determining optimal ripeness using sugar loading concept

sugar per berry (mg/berry)

Berry Aromatic Sequence

Ripening levels and sugar accumulation per berry

Time from berry softening

Berry Aromatic Sequence

Accumulation of sugar

Deloire, 2014 ASVO proceedings

Berry maturation and optimal ripeness

- Wine style limited by terroir
 - Sugar/acid balance in pulp
 - Seeds not brown?
 - Skin phenol and aroma concentration and composition optimal for wine style attainable

Conclusion

- No easy answers
- There will be an optimal time to harvest for your specific terroir and wine style
 - However, this may change seasonally
- Best to build knowledge base of grape composition and related wine quality
- Use history to help with future decisions
- The best grapes make the best wines