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Abstract

Leveraging data collected by commercial poultry requires a deep understanding of the data that are 
collected. Machine learning (ML)-based techniques are capable of “learning by finding” nonobvious 
associations and patterns in the data in order to create more reliable, accurate, explanatory, and 
predictive statistical models. This article provides practical definitions and examples of ML-based 
statistical approaches for the analysis of poultry production and poultry food safety-based data. In 
addition to summarizing the literature, two real examples of the supervised machine learning 
ensemble technique, random forest (RF), are provided with respect to predicting egg weights from 
a commercial layer farm and identifying the potential causes of a Salmonella outbreak from a 
commercial broiler facility. Specifically, as an example, for the prediction of egg weights, a training 
model and a test model were created, and a modification of RF was used to explore the ability to 
predict egg weights. Results identified multiple variables including Age, Farm Location, Body Weight, 
Total Eggs, Hens Housed, and House Style which were predictive of the continuous variable Egg 
Weight. With respect to the accuracy of the variable Egg Weight, the average error between the 
predicted and actual egg weight was determined to be less than 3%. With respect to broiler food 
safety, a relational database was constructed and a supervised RF model was developed to identify 
the predictors of Salmonella in a grow-out farm and associated broiler processing plant. Predictors 
of Salmonella that included livability, density of birds in the grow-out farm, and breeder age were 
identified. The task of choosing the most appropriate ML-based model(s) that accounts for the 
large number of variables common to the poultry industry and addresses the intricate 
interdependence between several production parameters and inputs while predicting multiple 
sequential outputs is complex. The use of ML techniques in combination with new data streams 
including sensors (e.g., visual and audio), IoT, and Web-scraping could offer a more comprehensive, 
efficient, and timely approach toward evaluating productivity, food safety, and profitability in 
commercial poultry.

Keywords: machine learning, artificial intelligence, data mining, knowledge discovery in databases, exploratory data 
analysis, supervised and unsupervised models, food safety, production efficiency, predictions

Review Methodology: The present article constitutes a detailed literature review using the online subscription-based citation indexing 
database, Google Scholar (keyword search terms using a Boolean search with only the “AND” modifier) terms included: poultry, 
agriculture, machine learning, artificial intelligence, sensors, random forest, boosting, support vector machine, data mining, and meat. 
References from the articles obtained by this method were evaluated for additional relevant material. The authors also checked for any 
upcoming studies that are not yet published and published books. In addition, the original data from several commercial broiler and layer 
companies were used for the ML-based technique RF.
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Methods for RF analysis of broiler data: Live production 
and processing data were provided by a commercial broiler 
company over a 3-year time frame from 2013 to 2016. The 
data were collected from 138 premises (i.e., breeding 
facilities, hatcheries, grow-out farms, and processing plants) 
from one company. The data set contained 124 different 
variables with over 30,000 observations. Data analysis was 
conducted using the following packages from R [1]: party 
[2], randomForest [3], and pROC [4]. In order to perform 
these analyses, live production and processing data from an 
integrated commercial broiler company were collected. A 
complete and exhaustive exploratory data analysis (EDA) 
was performed using graphic techniques, and recursive 
partitioning algorithms to detect and understand patterns 
and select the predictors for Salmonella presence in live 
production (breeding facilities, hatcheries, and the grow-out 
facilities) and the processing plant.

Method for RF analysis of egg weights: Live production 
and processing data were provided by a commercial layer 
company over a 7-year time frame from 2010 to 2017. The 
data were collected from 220 farms representing multiple 
integrated-layer companies. The data set contained 43 
variables with over 40,000 observations. Data analysis was 
conducted using the randomForest package [3] from R [1]. 
In order to account for temporal variability, “lag data,” or 
data from previous time steps, were utilized to predict the 
production variables in a time series model. In this 
implementation, to be truly predictive required that the RF 
model predicts all inputs such that the predictive input data 
would be available for the model to then predict the 
dependent variable, egg weights. The model was developed 
using the average egg weight, mortality, average bird weight, 
bird age, total eggs produced, and the feed conversion ratio 
from the week prior as inputs to predict the same data 
points in the subsequent week.

Review text

In 2017, the artificial-intelligence (AI) program AlphaGo 
Zero [5] developed by Google defeated an 18-time world 
champion Lee Sedol in the ancient Chinese board game Go. 
This was the first time a computer program defeated  
a world champion Go player [5]. What made the 
accomplishment most impressive is that AlphaGo Zero 
won the match without learning from any human moves [6]. 
Specifically, AlphaGo Zero played itself (over 30 million 
times) before playing Mr. Sedol, as opposed to the previous 
efforts that involved “learning” from approximately 100,000 
previously played games before playing an expert [5]. This 
accomplishment (beating a human without relying on 
current and historic human knowledge and strategy) reflects 
the continued application of a suite of new computer-based 
approaches that are classified as artificial intelligence (AI) 
and that are transforming multiple disciplines and activities 
including health care, internet searches, language translation, 

genomics, engineering design, and agriculture [7–11]. While 
these examples show the potential for these suites of  
AI-based techniques, it is just as important to understand 
the limitations and the effects those limitations will have in 
multiple fields including poultry production if AI-based 
techniques are treated as a “black box” and not questioned 
and hence not used appropriately. One recent example was a 
study by Google that the authors (and media) claimed showed 
that their AI system could outperform human radiologists at 
identifying breast cancers via mammograms and made several 
troubling assumptions based on false premises regarding the 
value of breast cancer screening [12]. Specifically, it was not 
recognized that different cancers act differently with respect 
to patient outcome and hence some forms are probably 
better left alone (i.e., the cure is worse than the disease for 
some noninvasive slow-growing tumors). To that point, the 
Google study assumed that the identification of cancer via a 
mammogram was always “good,” and hence, if the Google AI 
technique could identify more cancers, then the ML-based 
diagnostics were an improvement over its human diagnostic 
counterpart (i.e., the radiologist). Unfortunately, as we all 
know biology (e.g., cancer biology, poultry husbandry, and food 
safety) is not so simple. Specifically, with respect to breast 
cancer, mammograms appear to be excellent at identifying 
indolent forms of cancer (i.e., cancers that do not pose a health 
risk), and hence, some of the diagnostic benefits of 
mammography are questionable [13]. Combine this with the 
fact that doctors are inclined to aggressively treat most 
cancers that can thus lead to unwarranted interventions (i.e., 
excess treatment) and the question of whether mammograms 
and AI-assisted interpretation of those mammograms are 
actually helpful is a more complicated debate. In other words, 
the combination of humans and machines has the potential 
to improve diagnostics sensitivity but also negatively affects 
the outcome due to our lack of knowledge and biases. The 
overarching message is that “algorithms” may have significant 
negative implications if we do not recognize issues such as 
data bias, confirmation bias, and human ignorance. Applying 
the lessons from AlphaGo and the Google ML mammography 
study to agriculture will be fundamental toward the ultimate 
success or failure of ML-based techniques in agriculture. In 
short, at this point in time, the verdict is still out on how 
useful these types of techniques are in the multiple 
fundamental areas of agriculture, including poultry production 
and food safety. This article is intended to provide some 
context on supervised and unsupervised ML-based 
techniques and the potential of new data streams which may 
(or may not) improve the data analysis.

Part I: Food safety and production challenges  
with data

Food safety data challenges

With respect to attribution, as per the U.S. Center of 
Disease Control (CDC) poultry, meat is the most common 
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food identified in foodborne outbreaks, illnesses, and 
hospitalization and the second highest in food safety-
related deaths [14]. While the same study identified the 
most common reported factors contributing to poultry-
associated foodborne outbreaks were food-handling 
errors (64%) and inadequate cooking (53%), it is important 
to acknowledge that the continued efforts to reduce the 
poultry contamination at the farm and processing plant are 
necessary. In 2011, cultures of 13% of chicken samples and 
6% of ground turkey samples yielded Salmonella sp. and 
38% of chicken samples yielded Campylobacter sp. [15]. 
With respect to the value of those data and the overall 
efficacy of the U.S. poultry food safety-based surveillance 
system led by the Food Safety Inspection Service (FSIS) 
branch of the United States Department of Agriculture 
(USDA) and the Food and Drug Administration (FDA) for 
broilers and layers, respectively, the following limitations 
currently exist:

• Testing for foodborne pathogens is strictly qualitative as 
opposed to quantitative. Hence, the ability to use cur-
rent surveillance diagnostic tests as a risk factor for 
food safety is poor since the load of bacteria present is 
important to determine from a risk perspective. While 
non-culture-based methods exist for quantification [16, 
17] in poultry environments, no mandated integrated 
national system currently exists for strain identification 
and corresponding quantification at the retail level.

• At the processing plant, qualitative testing is not strain 
or serotype specific.

• At the layer farm, only one serotype of Salmonella is 
tested (Salmonella Enteritidis) as per the FDAs egg safe-
ty rule (21 CFR Part 118) [18].

• While there is a general consensus that testing by itself 
is not the solution to food safety, there is also evidence 
that the amount of testing of commercial poultry is epi-
demiologically uneven and inadequate. Specifically, at the 
retail level, only 22 states are currently enrolled in the 
FDAs National Antimicrobial Resistance Monitoring 
System (NARMS) program, which surveilled the retail 
poultry for four bacteria: Salmonella, Campylobacter,  
E. coli, and Enterococcus. NARMS data indicate the pres-
ence or absence of those bacteria and antimicrobial re-
sistance (AMR) genes in several common meats sold at 
the retail level, including whole chickens, chicken parts, 
and ground turkey. In addition to providing the surveil-
lance of AMR in retail meat, the data can also be used to 
provide information at the retail level on the presence/
absence of enteric bacteria.

• The current USDA-FSIS performance standard requires 
that between 0 and 5 carcass rinsate samples/mo. must 
be collected from the poultry processing plants de-
pending on the total product volume produced [19]. 
Testing as noted is qualitative but not quantitative. Re-
ductions in sample size have been found, for example, to 
decrease the population level sensitivity for comminut-
ed poultry-Campylobacter standards [20]. In summary, 

when considering the total amount of poultry pro-
cessed and consumed per year in the U.S., a general lack 
of qualitative and quantitative testing exists in order to 
understand the baseline levels of contamination at mul-
tiple stages of the poultry supply chain [21]. However, it 
should be noted that the goal of this surveillance is not 
only to reduce the amount of contaminated product 
from being shipped but also to advise FSIS on how the 
industry is doing in order to establish appropriate base-
lines [17].

From a data perspective, an additional complication is the 
current reality that food safety data streams are highly 
siloed (i.e., poorly integrated). For example, NARMS and 
FSIS performance standard data are not integrated with 
each other or even available on a real-time dashboard for 
companies or consumers. These data are further not linked 
to the CDC Foodborne Disease Outbreak Surveillance 
System (FDOSS), where the CDC monitors and reports 
the incidence and the rate of foodborne illnesses [22]. This 
prevents companies from easily integrating these data into 
their company data where they could be used by the 
companies to improve outcomes or better understand 
risk. Alternatively, many companies have parallel levels of 
food safety surveillance which mirror or often supersede 
FSIS sampling guidelines which they can integrate into their 
data which often includes various other relevant non-
processing plant data including data associated with 
breeding farms, hatcheries, grow-out facilities, and 
processing plants [14]. While these approaches offer 
insights and improve analyses at the company level, this 
system creates inconsistencies.

Production-based data challenges

Poultry is the second most consumed meat worldwide, 
and the production and trade supply chains are highly 
integrated regionally and beyond [22]. Poultry companies 
collect multiple levels of data throughout the supply chain 
(Fig. 1). However, even for integrated companies, these 
data are often siloed as opposed to integrated into a data 
warehouse (Fig. 1), where the data can be easily available 
to be processed and analyzed more robustly. In parallel, 
private companies like Agri Stats, Inc., provide redacted 
data back to poultry companies on a variety of metrics 
related to production and economics at an industry level. 
The ability to utilize these types of data allows companies 
a practical benchmarking tool with respect to production 
and economics.

In addition to separate data silos for breeders, hatcheries, 
grow-out farms. and processing plants, additional data 
including pathology, titer, and nutritional data are rarely 
easily available and poorly integrated. This is especially a 
relevant topic as new data streams described below add 
new additional data. However, the availability of reliable 
and robust data sets is often expensive and rare [5].
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New data streams

Although Hans Hoffmann was an artist, his quote, “The 
ability to simplify means to eliminate so that the necessary 
may speak” has significant relevance in the data sciences. 
As we enter the 2020s, a combination of Moore’s Law with 
respect to computer processing power, Big Data, 5th 
generation mobile networks, and the Internet of Things 
(IoT) will facilitate the connectivity of literally billions of 
devices in multiple fields including agriculture [23]. Below is 
a short summary of several potential promising techniques 
that will create new data streams and new integration and 
analyses challenges with potential ML-based solutions.

Molecular: The big data associated with next-generation 
sequencing (NGS) can be incorporated into risk analysis 
and predictive algorithms that aid the poultry industry to 
anticipate the areas of weakness in the food safety system 
[24] with the goal of using these data to improve monitoring 
and anticipate vulnerabilities in food safety [25–27].

Welfare: Sensors, cameras, and microphones for acoustic 
monitoring represent a relatively new approach toward 
monitoring welfare and production in animal agriculture and 
poultry. Specifically, understanding how chickens behave 
using sensors, cameras, and microphones can offer 
producers a new tool in identifying disease [28, 29]. In 
general, these types of automated continuous approaches in 
poultry are primarily at the research [28], development, and 
prototype level [7]. However, the potential applications are 
highly practical. For example, automated imagery analytics 
based on supervised machine learning-based approaches 
could be used to detect morbidity, presymptomatic signs of 
mortality [23, 29], and ectoparasite infestation [28].

Environmental: Meteorological variables with high spatial 
resolution including outside temperature, precipitation, wind 

speed, dew points, and air quality are publically available 
data that can be collected remotely. Open source data 
include NOAAs weather database [30], the Parameter 
elevation Regression on Independent Slopes Model 
(PRISM) [31], and the weather underground [32].

Web Scraping: Web Scraping is an automated (versus 
manually downloading relevant material) method of 
extracting large amounts of data from Websites and other 
online sources. The types of data that can be extracted 
include economic [33], environmental (e.g., temperature 
and humidity) as described above, and a whole list of other 
data (e.g., crop production reports and stock-based 
futures). The data collected can then be used in association 
with other data available to run further analysis. The 
mechanics of Web Scraping typically involve the utilization 
of an application programming interface (API) which allows 
for the interaction between your query application and 
the relevant data.

While the above approaches offer interesting new data 
sets that may offer new levels of understanding with 
respect to food safety, production efficiency, and welfare, it 
is important to heed the words of Hans Hoffman stated at 
the beginning of this section. To that point, the task of 
extracting useful information from a database is known as 
Knowledge Discovery in Database (KDD) which is often 
used interchangeably with the term Data Mining. Both 
describe the process of simplification of large data sets. As 
these types of data sets have gotten larger, more complex, 
and diverse, new concepts and terms have evolved to 
organize these data. As the name implies, the term “Big 
Data” is used to describe a data set that is Big (i.e., 
terabytes or more). More specifically, Big Data is also 
described using the four V’s that represent the 
characteristics of the data: volume (i.e., the total amount of 
data); velocity in which data are being produced and or 

Figure 1. Example of siloed and integrated data from breeding farms, hatcheries, grow-out farms, and poultry processing 
plants. For integrated companies, the ability to connect all these data into a data warehouse is integral toward facilitating 
data analysis and identifying risk factors across the entire supply chain. Not included in the figure are data from diagnostic 
labs such as titer and pathology data in addition to nutritional feed formulations and publically available data including data 
from FoodNet (CDC).
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ingested into a database; variety in data types such as text, 
images, and sound; and veracity of the data, because when 
the first three V’s (velocity, volume, and variety) increase, 
veracity typically decreases [34].

The ability to put all the data into a data warehouse that 
continuously ingests new data and stores the data securely 
via a cloud or block storage approach in a relational 
database system (e.g., SQL) is fundamental toward an 
improved data analysis. While this review does not focus 
on these aspects of data ingestion and organization, it is 
important to at least recognize this fundamental necessity 
of integrating all the available in order to realize the 
potential of the below described ML-based analyses.

Part II: Types of machine learning and relevant 
examples in poultry

The ability to analyze the data described above requires 
advanced approaches. Because there is no such thing as an 
algorithm that is appropriate for every situation, the 
following section is meant to define and provide examples 
of commonly used ML-based approaches in poultry and 
food safety.

Relevant ML-based definitions and examples

Statistics is a science that is focused on the appropriate 
use of the data to learn, understand, make inferences, and 
ultimately make predictions and/or understand causality 

[35]. However, in order to properly utilize statistics, various 
assumptions about the nature of the data need to be made. 
For example, in linear regression, the presence of outliers 
in the data are not well accounted for [36, 37]. By contrast, 
in random forest, which is a ML-based algorithm that 
makes no assumption about data distribution, the presence 
of outliers is accounted for [38]. This is relevant for food 
safety in that relevant outliers need to be “recognized” and 
“valued” in the analyses.

Machine learning is a subset of AI, which allows for the 
development of novel algorithms and statistical models 
without using explicit instructions. In effect, the “machine” 
(i.e., software) trains itself on a continual basis and uses 
new data to “learn.” Specifically, ML is based on the 
development of algorithms that use statistical models and 
pattern recognition to let the computer learn or improve 
its performance without being explicitly instructed or 
programmed [36, 37]. From a practical perspective in 
poultry production, this allows producers to make 
predictions on variable such as egg weight (Fig. 2) and 
better understand historic data with respect to the 
presence of Salmonella in raw poultry (Fig. 3).

Supervised and unsupervised learning are the two major 
classifications of ML. Supervised learning algorithms have a 
target continuous or categorical variable (i.e., regression, 
recursive partitioning algorithms), while unsupervised 
learning algorithms do not have a target variable or known 
label(s) within a variable; they have to search for them via 
techniques such as cluster analysis [35]. The following is a 
review of various relevant ML-based methods in poultry 
food safety and production which represent a group of 

Figure 2. Comparison of random forest prediction data against control data for average egg weight over the lifespan of a 
flock. The mean absolute error (MAE) is 1.547 grams and the root mean square (RMS) error is 3.172 grams. The average 
error between the predicted and actual egg weigh was determined to be less than 3% using data (i.e., egg weight, mortality, 
average bird weight, bird age, and total eggs produced) from the prior week.
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methods including partitioning, hierarchical, density based, 
grid based, and model based [39].

Simple and linear regression
One of the simplest and oldest versions of ML is regression. 
Regression describes the relationship between an independent 
variable or predictor and a dependent variable (i.e., response 
or target) to help explain the change in the response when 
the predictor(s) change. The result is a formula represented 
by a line that can be used to make predictions including 
interpolations (estimate that lies between two observations) 
and extrapolations (estimate beyond the observed data). 
The use of more than one independent variable to predict 
an outcome is called multiple regression or multivariable 
regression [40]. There are several types of regression 
methods, including logistic regression, lasso regression, ridge 
regression, and tree model regression [38]. With respect to 
poultry, the regression-based models have been used to 
analyze poultry growth curves under different diets [41], 
food quality characteristics [42], and the detection of 
contaminants in poultry carcasses [43].

Logistic regression is generally preferable when the 
outcome is a categorical dichotomous variable (e.g., Salmonella 
positive or Salmonella negative). Logistic regression models 
will describe the probability of an output given a variable or 
risk factor, such as the risk of a disease given some risk 
factor [44]. Logistic regression models are often used when 
studying the presence or absence of Salmonella and other 
disease where presence/absence is a useful dependent 
variable. [45, 46]

Compared to other ML-based techniques, regression 
models perform well in situations with reduced number of 
variables, assuming the data meet certain assumptions. 
However, when there are reduced number of observations 
which are often common in poultry food safety and 
production, models such as Lasso and Ridge Regression 
can be used that “penalize” variables that are poorly 
represented [36, 37].

Support vector machine
Support vector machine (SVM) is a classification algorithm 
widely used for the analysis of high dimensional data, 

Figure 3. Description of the KDD process performed in broilers to predict the presence of historic Salmonella presence/
absence at the re-hang line in the processing plant. The diagram shows the analysis performed over one quarter and shows 
the results for that particular data set. Results are not generalizable to other quarters and companies. In this KDD process, 
RF was used to predict the important variables from over 50 potential variables. Next, the most important variables were in-
cluded in a hierarchical decision tree and standard logistic regression in order to identify the specific cutoff points in relevant 
variables. For example, livability below 93.41% was found to be a predictor for Salmonella presence at the re-hang line.
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where the number of variables also called features exceeds 
the number of observations [47]. SVM searches for 
observations that lie at the edge(s) that is between the 
observations of different classes and different values for 
the target variable and use these variables to find the 
optimal line or hyperplane that identifies different classes 
for the target variable [35, 48]. In short, it categorizes high-
dimensional continuous data. While it is currently primarily 
used in fields like bioinformatics, gene expression, and 
image recognition [47], SVM has been used to characterize 
the poultry meat via near-infrared (NIR) spectroscopy 
[42] and auditory sounds from chickens including gurgling 
sounds (e.g., rales) associated with several infectious 
respiratory agents in poultry [29].

Tree models
Tree models such as, decision trees, are commonly used 
ML-based technique, because they are easy to view, 
understand, and explain (Fig. 3). Specifically, a tree model 
can be used as a regression-based technique if the model is 
predicting a continuous variable or as a classification if 
predicting a categorical variable [48]. Generally speaking a 
decision tree consists of a root, branches, nodes, leaves, and 
rules or decisions [35]. The tree is built using a recursive 
partitioning algorithm that selects the best variable (root) 
partitioning point of an independent variable (rule or 
decision) that can be used to predict a dependent variable 
[48]. This partitioning (split) point is used to define two 
groups of observations (i.e., decision tree branches), those 
that perform better in predicting and those that do not. 
Next, the observation of each branch of the algorithm 
selects again an independent variable (node) and repeats 
the previously described process until no more observations 
are left or partitioning is no longer possible [35, 48]. 
Commonly the choice of the optimal splitting point is done 
by using a measure of dispersion such as a Gini index [35, 
37]. Tree models are a widely used ML-based algorithm and 
have shown good performance in predicting egg weight in 
experiments compared with other regression model [49]. 
In addition, tree models have been used to predict 
symptoms of disease in poultry, using audio signal processing 
[50]. In Fig. 3, a hierarchical tree model was used following 
the selection of various variables identified by RF to identify 
the cutoff points associated with the dependent variable 
Salmonella as detected in the processing plant.

Ensemble tree models
Ensemble modes create multiple single models and 
combine them to a single one that performs better than 
each one separately. Examples of ensemble models include 
RF and Boosting [48]. In general, the ensemble models 
allow for greater confidence with respect to repeatability, 
effect size, and significance. Also, in general, these ensemble 
methods are preferential to single regression trees because 
they use at least two sources of randomization during 
construction [51–53]. Specifically in an ensemble approach, 

the data are randomly selected using non-parametric 
boot-strap based methods [54]. Bootstrap-based methods 
“draw with replacement” and thus allow multiple 
calculations (e.g., confidence intervals, means, standard 
errors, and regression) as opposed to just one. Those data 
(i.e., in-bag samples) and the data that remain are the “out 
of bag” samples. Next classification and regression trees 
are used to build a non-pruned tree with the in-bag 
samples where a small number of explanatory variables 
are randomly chosen to determine the best split at each 
node. Each node split is based on the Gini index [55]. The 
out-of-bag samples are used as an estimate of performance 
of each tree and provide a way to rank the importance of 
the explanatory variables through the calculation of the 
mean decrease accuracy [38, 53, 54].

Random forest

Random forest is a statistical tool that works by analyzing a 
random selection of variables and observations to then 
create a decision tree with a subset of data [48, 55]. Since it 
is an ensemble model, it can create hundreds of decision or 
classification trees and then combine the results of those 
trees to produce a model that is more predictive [38, 51, 
53]. The results indicate the variables that were more 
important in predicting the dependent variable and also 
how efficient the model is in producing the partition. One of 
the advantages of this algorithm is that hundreds of variables 
can be included as independent variables which are not 
possible for other statistical techniques including regression. 
The model also performs well using variables of low 
correlation, also known as noise, which is an important asset 
when the goal is knowledge discovery and prediction [56]. 
For example, RF is commonly used to analyze the microarray 
data for gene selection from a large number of genes and 
noise [38, 57]. One practical application of this approach 
uses RF to understand the genotypic molecular mechanisms 
underlying egg shell quality during the production cycle [58].

The ability to use variables with low correlation and 
being able to analyze hundreds of variables simultaneously 
are key advantages of RF for the analysis of poultry based 
data. To that point, RF has been used for organ and meat 
quality classification [42, 59], food safety for predicting the 
prevalence of Listeria spp. in pastured poultry environments 
using various types of meteorological data [27], and poultry 
health to predict highly pathogenic avian influenza (H5N1) 
outbreaks [60].

We have used this approach, as can be seen in Fig. 3, as 
a way to reduce the number of exploratory variables from 
close to 100 to below 10.  As Fig. 3 shows, following the 
use of RF, we then utilized both conditional decision trees 
and single logistic regression to further clarify specific cut 
points with respect to livability, flock, ventilation, and 
breeder age (Fig. 3).

In Fig. 2, we used RF to predict egg weights 1 week into 
the future using historic data. While the average error 
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between the predicted and actual egg weights was 
determined to be less than 3% based on the egg weight, 
mortality, average bird weight, bird age, and total eggs 
produced from the prior week, the model was not as 
accurate at capturing week to week variations. However, 
the potential for improvements in predictions exists using 
additional data including more data points and the 
consideration of additional variables including additional 
lag data.

Boosting

Boosting is another ensemble, step-wise tree-based model 
that works in a similar fashion to RF in that Boosting 
constructs multiple decision trees to combine them and 
produce a better final model [48, 61]. In Boosting, each 
fitted model at every step in the tree attempts to 
compensate for the shortcomings of the previous fitted 
models [61]. The Boosting algorithm is considered ideal for 
observations that are difficult to classify [48, 61]. Specifically, 
the algorithm identifies observations that are difficult to 
classify in the first model and “tries” to classify them in the 
next steps until all the observations are classified. While 
Boosting is ideal for helping with classification, Boosting 
does not perform well in situations where the data have 
noise [48]. Consequently, when the data have noise, it is 
preferable to use an algorithm that includes bagging such as 
RF. In poultry, Boosting has been used as model to predict 
the presence of Listeria spp. in the poultry environment 
[51]. In addition, Boosting has been used in food safety 
using genome data from nontyphoidal Salmonella strains 
collected as part of the National Antimicrobial Resistance 
Monitoring System (NARMS) program, to predict 
antimicrobial minimum inhibitor concentration (MICs) 
values, achieving overall accuracies of 95–96% within a ± 1 
2-fold dilution factor [62].

Artificial neural networks

Artificial neural networks or neural networks are 
supervised learning techniques inspired by the structure of 
biological neural networks and try to emulate how we 
think the brain works [63]. They have become useful 
because they do not require making any assumptions 
about the data. Artificial neural networks can be used with 
categorical and continuous variables, and can use a large 
number of predictors [35, 37]. The method takes multiple 
values of the input layer and using a function called the 
activation function, classifies the output using a user-
defined criteria [35]. The simplest form of a neural network 
is the perceptron or single layer perceptron (SLP) and the 
basis for the more advanced models like multilayer 
perceptron model (MLP), convolutional neural networks 
(CNNs), and recurrent neural networks (RNNs) [63]. 
Artificial neural networks are computational models that 

are utilized to identify the structure in large high-
dimensional datasets [64]. The technique has been used for 
the analysis of poultry data including egg classification, 
where dielectric spectroscopy and neural network were 
used to detect egg freshness [56]. In addition, neural 
networks were used among other ML-based algorithms to 
optimize poultry premises selection in order to improve 
poultry farm efficiency [65].

While this review article does not focus on the 
applications of machine learning in poultry genetics, it 
should also be mentioned that neural networks and other 
deep learning-based techniques are used for genomic-based 
linear prediction (GBLUP) and selection [66]. Specifically, 
methods such as genomic-based linear prediction (GBLUP), 
Bayesian regression, random forest, and artificial neural 
networks have been used for genomic selection to improve 
the production efficiency in livestock [67].

Practical approaches toward analysis
While there are several open-source and non-open-source 
statistical software platforms and packages specific to 
various computer languages, from a practical perspective, 
selecting an appropriate software analysis tool is dependent 
on the skill set of the organization itself. Some prepackaged 
programs exist that are useful for exploratory data analysis. 
However, statistics and ML-specific packages written for 
statistics-oriented programming languages allow for more 
in-depth insights through software written in-house or via 
a third party. Initially, the software can be very useful; 
however, over time, users often recognize the advantages 
of using a computer language to manage and perform 
multi-level tasks with several steps, ranging from data 
capture, data cleaning, data manipulation, variable creation, 
merging, sub-setting, exploratory data analysis, plotting, 
running multiple analyses, model selection, model testing, 
model evaluation, and model and deployment often in a 
cyclical manner. Thus, many users tend to move to a 
computer language to perform these jobs. Popular open-
source computer languages used to perform the tasks 
described above include Python [68] and the R Project [1], 
which both have large amounts of the required packages 
to carry out all the steps involved in a Knowledge 
Discovery in Database including the ML-based techniques 
described in this article. However, one of the main 
advantages of the R Project software is that the functionality 
of the software can be extended by the addition of small 
groups of files and resources packed as a collection of 
functions and computer programs, called packages. Since 
this software has thousands of packages used in both 
academia and industry, it provides unique flexibility to 
analyze and visualize data and results. In addition, there are 
additional R packages that can be used to build user 
interfaces in order to integrate custom models with 
various Web services. However, it should be acknowledged 
that there are several elements that are involved in a 
software development project and not all can be done by 
using just one computer language. Therefore, the R Project 
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can be used to do most of the core jobs, especially data 
management, visualization, and analyses, and other programming 
languages can be used to perform other tasks, such as data 
management and server storage, integration, and Web 
development. While the R Project does offer flexibility to 
analyze and visualize data, it does require a certain level of 
technical expertise in both computer programming and 
statistics. The learning curve is generally described as steep. 
In addition, while R is a powerful software computer 
language, it takes longer to process data relative to lower 
level languages. In addition, the combination of large data 
sets and complex ML-based approaches toward analysis is 
becoming more common [69, 70]. Therefore, it is becoming 
more common to utilize R packages that utilize techniques 
such as parallel computing, which while not discussed in 
this review offer the potential to decrease processing time 
by executing multiple computing tasks simultaneously 
[69–71].

Conclusion and predicting the future

Yogi Berra, the former New York Yankees manager and 
player, once said, “It’s tough to make predictions, especially 
about the future.” ML and AI are the powerful methodological 
approaches to predict the future and understand the past. 
While the refinement and further development of these 
types of ML- and AI-based techniques are integral toward 
improving our understanding of poultry production and 
food safety, it would be naïve to think that these tools are 
the end-all and be-all of poultry production. Even in a “fully 
developed” AI world, things like human instincts, 
institutional knowledge, and random variability still need to 
be acknowledged and integrated into decision-making. This 
review aims to define and describe the current applications 
of ML-based approaches for poultry with respect to 
production and food safety. If ML- and AI-based approaches 
are going to prove to be “revolutionary,” we need to make 
sure we use the appropriate methods for the question(s) 
asked and acknowledge the flaws. Unfortunately, if our 
knowledge about the variables associated with that 
outcome are incomplete, we run the risk of implementing 
and institutionalizing a new flawed approach that may or 
may not be better than the current system.
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