

	1 IRRIGATION EFFICIENCY PRINCIPLES	
<u> </u>	OPTIMIZING IRRIGATION EFFICIENCY FOR PISTACHIO	
OUTLINE	3 SYSTEM DESIGN OPTIONS, BENEFITS, AND DRAWBACKS	
	4 WATER APPLICATION REQUIREMENTS	
	5 IRRIGATION SYSTEM EVALUATION	
CONSERVATION IRRIGATION Lab	6 MAINTENANCE RECOMMENDATIONS	3

IRRIGATION LAB. COM

KEY CONCEPTS, DEFINITIONS, RELATIONSHIPS, AND CALCULATIONS RELATED TO BRIGATION EFFICIENCY, APPLICATION, AND DISTRIBUTION UNIFORMITY

Irrigation Efficiency Principles

(

What is irrigation efficiency (IE)

IRRIGATION EFFICIENCY PRINCIPLES

 $IE = rac{Beneficial\ Water\ Use}{Total\ Applied\ Water}$

CONSERVATION IRRIGATION

©	
What is beneficial plant water use?	
IRRIGATION EFFICIENCY PRINCIPLES	
Transpiration	
Nutrients, amendments, pest, weed inputs	
Leaching salts	
Frost protection	
Canopy cooling	
CONSERVATION IRRIGATION Lab	
·	

(

Where are the inefficiencies in the system?

IRRIGATION EFFICIENCY PRINCIPLES

- Leakage from pipes, canals, ditches, valves/gates
- Operational losses, over-running irrigation
- Soil evaporation, percolation, runoff, wind losses
- Pipe flushing, screen cleaning, filter maintenance (unavoidable)
- Chemical injection to clean pipes and hoses

CONSERVATION IRRIGATION

©

Why increase irrigation efficiency?

IRRIGATION EFFICIENCY PRINCIPLES

- Cost of water and energy
- Grow more acreage with water supply
- Disease management and plant health
- Stewardship and compliance with environmental regulations (e.g. ILRP, SMGA, AB 589)

CONSERVATION IRRIGATION

3

Subsurface drip irrigation system

SYSTEM DESIGN CONSIDERATIONS

- Minimize soil evaporation (+)

- Flexibility of irrigation timing (+)
 Limited weed growth (+)
 Protected from above ground damage (+)
 Challenging to inspect/maintenance
- Small wetting zone (-)
- Root intrusion (-)
- Animal damage (-)
 Expensive for herbicide protection (-)

CONSERVATION IRRIGATION

Dual Driplines?

SYSTEM DESIGN CONSIDERATIONS

- Larger wetting zone (+)
- Increase application rate (+)
- Challenging to inspect/maintenance (-)
- Increased energy costs (-)
- Increased fixed costs (-)

CONSERVATION IRRIGATION

Distribution Uniformity

IRRIGATION SYSTEM EVALUATION $DU = \frac{Average\ Flow\ Lowest\ 25\%\ Emitters}{Average\ Flow\ All\ Emitters}$

