

Where to start

UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION

2020

SAMPLE COSTS TO ESTABLISH and PRODUCE **PISTACHIOS**

SAN JOAQUIN VALLEY - SOUTH

https://coststudies.ucdavis.edu/en/current/

CAPITAL INVESTMENT CONCERNS

"Expensive" ground

- \$15,000/acre ground, no amendments needed + 5% simple interest over 10 years = \$7,500
- FINAL COST \$22,000/ac or ...

"Inexpensive" ground

\$7,000/acre ground

- Year 1: 1.5 t/ac Sulfur \$800
- Year 2 thru 10: \$300/yr
- Extra acid and gypsum through the system \$3,000 (Simple interest, 10 yrs @ 5% \$3,500)
- Year 7 10:
- 1000 lb/ac currents yield loss compared to \$2,400 1000 lb/ac cumulative

FINAL COST \$19,400/acre

UC UNIVERSITY OF CALIFORNIA Agriculture and Returnal Resources Co.

Cost Comparison for 150 Acres @ 121 trees/ac (18 x 20 foot spacing)

EVALUATION COST:

Four zones-1, 2, 3 & 5 foot

- Soil analyses 1,000
- Water analysis 50
- Backhoe 500
- Consultant 600

TOTAL \$2,150

ORCHARD COST:

18,150 trees, stake, bud, train @ \$12/tree 217,800

Irrig System @ \$1,500 225,000 Land @ \$10,000 1,500,000 TOTAL

\$1,942,800

ightharpoonup 0.11% of initial capital.

SoilWeb Earth in Google Earth Google Earth Or another software that can process .kmz files

Web soil survey data may not match ground observations –									
Calfax of Depth Range (in)	Horizon Designation	lline-sodi % Clay	C %Sand	% Organic Matter	pH by water Extraction	Sat. Hydraulic Conductivity (mm/hr)	EC (dS/m)	SAR (%)	Carbonates (% of < 2 mm)
0 - 2	Α	25	22	0.8	7.4	10.8	6.0	10	3
3 - 12	A	30	22	0.5	7.4	10.8	10	18	3
12 - 24	Bw	22	38	0.5	7.4	7.2	12	20	3
24 - 36	Bny	22	30	0.3	7.7	7.2	12	20	3
36 - 60	Bnyz1	20	35	0.2	7.7	7.2	10	20	8
Lethent of Depth Range (in)	Clay loam Horizon Designation	% Clay	% Sand	% Organic Matter	pH by water extraction	Sat. Hydraulic Conductivity (mm/hr)	EC (dS/m)	SAR (%)	Carbonates (% of < 2 mm)
0 - 2	Ap	35	36	2.0	7.9	10.5	6.0	0	0
3 - 12	Bt	32	36	1.4	8.4	10.5	8.0	8	0
12 - 24	Bt	30	45	0.3	8.6	2.0	12	15	1
24 - 36	С	23	36	0.3	8.0	5.5	12	15	2.0
36 - 60	С	27	23	0	7.7	3.5	8.0	15	0.5

How to do it

SOIL PROFILE

Sampling scheme for variable 160 acres

 Use soil probe or auger to composite sample 0-1 & 1-2 foot depths from at least 8 holes 50 feet apart for each soil type.

 Put at least one backhoe pit to 6 feet in each 40 acres of one soil type.
 Take deeper samples from pits.

How to do it SOIL TEXTURE Making a soil "ribbon" test from a moistened ball.

What to evaluate? SOIL PROFILE

STRUCTURE

•

SOIL PROFILE -- STRUCTURE Broke grain Rapid Aloderea Oriendar Primade Masaive Story Moderea Story

Pick irrigation system that matches soil infiltration!!! 2.5"/week peak season

What to evaluate? SOIL PROFILE STRATIFICATION

Fine sandy silt layer with high alkalinity and poor structure at the 34 to 44-inch depth may impede root development between 2 layers of clay loam. Slip plowing below this depth is advisable.

What to evaluate? SOIL PROFILE

0

0

SALINITY/FERTILITY

Relative yield of as a function of soil ECe Cotton Relative Yield = 100 - 5.2(ECe - 7.7) Alfalfa Almond Cotton Pistachio Pistachio Pistachio Pistachio Soil Saturation Extract Ec (dS/m) Sanden, B.L., L. Ferguson, H.C. Reyes, and S.C. Grattan. 2004. Effect of salinity on evapotranspiration and yield of San Joaquin Valley pistachios. Proceedings of the IVth International Symposium on Irrigation of Horticultural Crops, Acta Horticulturae 664:583-589.

DEVELOPING NEW PISTACHIO PLANTINGS USING SALINE WATER?

Tree leaf tissue responses								
	NO3-N	NH4-N (ppm)	PO4-P (ppm)	K (%)	Na (ppm)	CI (%)	B (ppm)	
Rootst		aves 9/1		Pistachio 2005				
Aque	63	160	580	1.02	222	0.27	194	
50/50	55	128	545	1.06	220	0.27	**492	
Well	65	148	500	1.08	314	**0.38	**673	
Critical le	evels of spe	cific ions in	leaf tissue	K (%)	Na(ppm)	CI (%)	B _(ppm)	
		mples prior t		(PG1)		Pistachi	o 2009	
(I OI Page	or dioode or	Degree of t		2.69	100	0.20	378	
	N		ing Severe	2.83	94	0.22	**831	
0			_	2.79	90	0.22	**780	
Specific ion Levels in Leaf Tissue				(UCB1)	Pistachio 2009		
Chloride (%) <	0.2 0.2-0	.3 >0.3	2.08	80	0.16	318	
D (.00		00 - 000	2.17	81	0.17	**616	
Boron (mg	yı) <	300 300 - 7	00 >800	2.28	91	0.19	**716	
	Kermar	Leaves	s 8/28/13	(PG1)		Pistachi	o 2013	
Aque		1.96	0.09	1.97	400	0.20	637	
Blend		2.23	0.12	2.49	425	0.33	**1345	
Well		1.88	0.10	2.45	400	0.38	**1790	
	Kermar		8/28/13			Pistachi		
Aque		1.95	0.10	1.87	450	0.20	537	
Blend		2.22	0.12	2.14	475	0.23	**959	
Well		2.09	0.11	2.11	450	0.25	**1122	

Salt added to crop rootzone from start of project											
Irrigation	2005		2008		2011		2013		Total	Total	² EC+
Treatment	Irrig	Salt	Irrig	Salt	Irrig	Salt	Irrig	Salt	Irrig	Salt	Max
(avg dS/m)	(in)	¹ (lb/ac)	(in)	(lb/ac)	(in)	(lb/ac)	(in)	(lb/ac)	(in)	(lb/ac)	(dS/m)
Aque (0.5)	10	1,742	8.8	1,553	33	3,387	33.3	5,686	215.8	32,848	2.6
Blend (3.2)	10	8,570	8.7	8,185	41	40,838	50.5	33,730	247.9	193,172	15.1
Well (5.2)	12	14,782	9.6	13,296	35	48,596	39.0	72,794	225.0	300,395	23.5

1 Irrigation inches for total tree spacing, salt totals (lb/ac) calculated for a 9.5 foot wide subbing area centered on the tree row. Assumes 640 ppm soluble salt = 1 dS/m and a 5 ac-ft depth of soil = 20 million lbs.

 2 Maximum increase in soil saturated paste EC for a 5 foot rootzone with no precipitation of salts and no leaching past the 5 foot depth.

Yields declined 3.0% PG1 and 1.4% UCB for every additional unit increase in ECe above 5-6 dS/m after a 10-year study of trees planted into saline soil

How to fix it How to do it Leaching calculations for FIX: Monitor soil EC, calcucomposite pit samples late reclamation leaching Gooselake soils data – composite pits 8, 9, 11, 12, 13 рΗ Mg 0-1' 40 7.9 5.5 34.2 4.6 21.7 4.9 5.7 45 8.0 29.9 4.3 9.6 8.0 25.1 13.6 15.8 Guidelines to evaluate orchard soils and water supplies for excess salinity for mature pistachio trees Degree of restriction for pistachios Average salinity EC (dS/m) of: None Increasing Severe = 6.5 dS/m Avg. $root zone^1 < 6$ 6 - 8 > 8-12 4 - 8 Irrigation water¹ < 4 > 8-12 1 Guidelines based on field data where the annual leaching fractions were about 15% for the "No restriction level" and 30% for the "Severe Level".

How to do it STRATIFICATION When the street of the stree

Effect of Pre-plant Tillage on Pistachio Development Under Drip Irrigation (planted 2006)

Treatments:

- 1. Auger only: no deep tillage. Row marked with furrowing shovel, sulfur applied and incorporated with second pass of same shovel. Standard 3-point hitch auger to be used at planting same as all other treatments
- 2. Slip plow (standard tillage for whole project): one slip plow pass down the tree row with a 15-inch shoe penetrating 42 to 50 inches.
- 3. Triple slip: slip plow treatment down tree row (as above) with an additional pass 6 foot on either side. A final fourth pass repeated down the center (tree row) pass to achieve a 52-inch penetration and further fracture the profile.
- 4. Backhoe to 7 feet: 3' wide x 7' trench

75