Managing Pistachio Tree Health Under Saline Conditions Advances in Pistachio Production - Short course Mae Culumber Nut Crops Advisor, Fresno 9th dvances in PISTACHIO PRODUCTION November 16, 2020

Pistachios are salt tolerant but elevated salinity....

- · degrades soil structure
- decreases water uptake
- · stunts growth

- and decrease nut crop quality
- tree nutrition, soil, and water monitoring and management is key!

Dissolved salts in What is salinity? irrigation water or soil solution Cations: Ca²⁺, Mg²⁺, Na⁺, K⁺ Anions: SO₄²⁻, Cl⁻, **HCO₃**⁻, CO₃²⁻, NO₃⁻ **B** (H₃BO₃ (boric acid) and H₂BO₃- (borate)) University of California Agriculture and Natural Resource

Mechanisms of salt tolerance

- High salt in soil leads reduces water potential between the soil and tree
- Tree makes physiological adjustments to maintain osmotic gradient for water movement from root to transpiring tissues
 - high energy cost
 - reduced vigor
- Na⁺ and Cl⁻ (to a lesser extent) concentrations decrease along the transpiration stream through tree
- salt storage in the stem's xylem structures and circulation in the phloem to prevent ions accumulation in leaves (Godfrey et al. 2019)

Dormant Season Salinity	
Management:	1000
improve water penetration and	1
leach enough salt for efficient use of	H
water next season	
THE SHOW THE YEAR OF THE YEAR	1

Salinity Management Timeline:

November:

 $\frac{Sample}{Determine\ EC,\ pH,\ Na^{+}\ (SAR),\ B}$

<u>Calculate and apply soil and/or water amendments if</u> needed

<u>Calculate depth of reclamation:</u> Determine depth of water (inches per foot depth soil) needed to achieve desired salinity Determine timeline for completing leaching program

November to March:

Leach in dormant season

 $1^{\rm st}$ fill profile to field capacity (3-6 inches over 3-4 days), then 2-4 days drainage.....then begin leaching applications

<u>Re-sample</u> irrigation water and soil from 1' to 5' to determine effectiveness of applied leaching and starting point for growing season

Key things to look for in water and soil analyses: Analysis Threshold for caution рΗ > 8 acidifying amendments likely necessary > 4.5 water, > 6-8 soil (potential EC (dS/m) reduced vigor and production) Saturation percentage (Sat %) Soil texture estimate Na⁺ and Cl⁻ (meq/L) > 20* soil and water Boron (mg/L) > 3 soil and water > 5x EC_w likely infiltration problems Exchangeable sodium % soil > 6% likely infiltration problems > 2.5, acid forming amendments Bicarbonates (HCO₃-) water (meq/L) recommended % Lime (CaCO₃-) soil <1% add Ca amendments, >1% use acid forming amendments

Sanden, B.L., L. Ferguson, H.C. Reves, and S.C

Soil salinity amendment, unit conversions and leaching calculations

Cnvrsn-Infilt-LeachCalc

http://cekern.ucanr.edu/Irrigation Manag ement/ANALYTICAL CONVERSIONS AND LEACHING CALCULATIONS/

Key Salinity measurements: EC and TDS

Electrical Conductivity (EC) (soil and water)

- · driven by concentration of salts
- · some ions conduct electricity more than others
- Units: deciSiemens per metre (dS/m) and millimho per centimeter (mmho/cm)
- 1 dS/m = 1 mmho/cm

Total dissolved solids (TDS) water

- total mg of salt remaining if one-liter water evaporated to dryness
- Units: (mg/L or ppm)

Convert EC to TDS, or vice versa: $TDS (mg/L \ or \ ppm) = EC (dS/m) \times 640 \ (EC \ from \ 0.1 \ to \ 5 \ dS/m)$ $TDS (mg/L \ or \ ppm) = EC \ (dS/m) \times 800 \ (EC \ 5 \ to \ 10 \ dS/m)$

University of California Agriculture and Natural Resour

Soil and water analyses unit conversions: meq/l, mg/l, ppm...

- Milligrams per liter (mg/L) = parts per million (ppm)
- mg/L = milliequivalents per liter (meq/L) × equivalent weight
 meq/L = mg/L ÷ equivalent weight
- Equivalent weights of selected

ions	
Constituent	Equivalent weight
Sodium (Na*)	23
Calcium (Ca ²⁺)	20
Magnesium (Mg ²⁺)	12
Ammonium (NH ₄ ⁺)	18
Potassium (K+)	39
Bicarbonate (HCO3°)	61
Carbonate (CO ₃ ² -)	30
Chloride (Cl')	35
Sulfate (SO ₄ ² ')	48
Nitrate (NO ₃ ')	62
Phosphate (H ₂ PO ₄ *)	97

ALCULATIONS FO	R SOIL E	XTRACT	M CKA	ATER QU	ALITY E	MALUATI	ON				
Total Salte	r44		Mo	No.		HCO1	sox			MOD	В
									met		mg1
3120		347	91	482		210	1410	450			
	-	240									
EC	pH	Ca	Mo	No		HC03	804	cı	F	M03	8
			mest	meg1	SAR	mest	meg1	megt	met	mat	mg1
dSim											
4.9	7.6	17.4	3.8	21.0	6.4	3.4	14.7	12.9	0.3	13	4.5
	7.6 0.0 0.0			21.0	0.0 WC0000	3.4 0.0 0.0	14.7 0.0 0.0	0.0 0.0	0.3	13	45
	Total Salts TDS (ppm, mg/l) 3120	Total Salts pH TDS (ppm, mg/l) 7.6	Total Salts pH Ca TDS (ppen, mg/b) mgs1 3120 7.6 347 240	Total Salts pH Ca Mg TDS (ppen, mglt) mgl mgl 3120 7.6 347 91	Total Salts PH Co Mg Na TDS (ggm, mgi) mgil mgil mgil 3120 7.6 347 91 462 246	Total Salts pH Ca Mg Na T05 (gen, mgl) mgl mgl mgl mgl 3120 7.6 347 91 462 246	Total Salts pH Ca Ma Na HCO3 TOS (spen, mail) mgl mgl	705 (seen, mg/h mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Total Satts pH	Total Satts pH Ca Mg Ns HCO3 SO4 Cl F TOS (prem mp5 mp2 mp1 mp1 mp1 mp1 mp1 mp1 3120 70 3470 91 462 235 1410 4640 0.31 3120 70 3480 34	Total Salts pH Ca Mg Na HCO3 SO4 CI F MO3 TOS (green mg) mg4 ms4 mg4 ms4 ms4 ms4 ms4 ms4 ms4 ms4 ms4 ms4 ms

Calculate soil applied rates

Simplified Goal: replace Na⁺ with Ca⁺ and leach the Na⁺ out

- determine calcium requirement (meq Ca/100 g soil needed to displace Na⁺) and amendment rates from soil analysis, use:
 - SAR
 - Exchangeable sodium
 - Exchangeable sodium percentage (ESP)
 - CEC

Example Calculations: see Hanson and Gratton pages 116-118

University of California Agriculture and Natural Resource

Calculate soil applied rates Tons of material per acre foot soil

Total Committee part and Committ								
meq Ca/100 g soil	Gypsum (100%)	Sulfuric Acid	Sulfur (100%)	Lime sulfur (9% Ca, 24%S)				
1	1.7	1.0	0.3	1.4				
1.5	2.6	1.6	0.5	2.1				
1.5	2.0	2.0	0.5	2.12				
2	3.4	2.1	0.7	2.8				
2.5	4.2	2.6	0.8	3.5				
3	5.2	3.2	1.0	4.2				
3.5	6.0	3.7	1.2	4.9				
4	6.9	4.2	1.3	5.6				

Adapted from Hanson and Gratton University of California, Pub 3375. 2006.

Caution: do not exceed 1500 lbs in a single application in established orchards

	lbs of amendment per acre ft water								
meq/L Ca	Gypsum (23%Ca, 19%S)	Acid	Sulfur	Lime sulfur (9% Ca, 24% S)	Nitro sulfur (20% N, 40%S)	Nphur (10%N 18			
1.0	234 468 702	133 266 399	44 87	191 382 573	109 218 327	242 484 726	Low to moderate ra		
4.0 5.0 6.0	936 1170 1404	532 665 798	174 218 262	764 955 1146	436 545 654	968	Moderate to high rate		
ECw	$EC_{w} = (Na^{+} + Ca^{++} + Mg^{++}) \div 10$ $SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$								

Calculate depth of water for reclamation

Depth	SP	pН	EC	Ca	Mg	Na	SAR	ESP	
0-1' 1-2'	40	7.9	5.5	34.2	4.6	21.7	4.9	5.7	
1-2'	45	8.0	6.7	29.9	4.3	39.6	9.6	11.4	
2-3'	45	8.0	7.3	25.1	4	51.8	13.6	15.8	
Αv	Average salinity:		6.5 d	S/m					

Required Leaching Ratio* (depth water/depth soil) = K / (Desired EC/Original EC)

* Assumes leaching water is ≈1.0 dS/m

Use K factor of 0.15 for sprinkling, drip or repeated flooding. Boron use 0.6 leaching coefficient 3x greater than other salts

University of California Agriculture and Natural Resour

Calculate depth of water for reclamation

Required Leaching Ratio* (depth water/depth soil) = K / (Desired EC/Original EC)

* Assumes leaching water is ≈1.0 dS/m

Use K factor of 0.15 for sprinkling, drip or repeated flooding. Boron use 0.6 leaching coefficient 3x greater than other salts

Required Leaching Ratio (depth water/depth soil) = 0.15/(3/6.5) = 0.325

Actual depth of leaching water = 0.325 * 3 feet = 0.98 feet

University of California Agriculture and Natural Resour

Table 3 CONCENTRATION FACTORS (X) FOR PREDICTING SOIL SALINITY (ECG) FROM IRRIGATION WATER SALINITY (ECW) AND THE LEACHING FRACTION (LF)

Applied

Applied

Applied Inserting fraction required over long-term irrigation with a salighting durater to other a decirate over larget month.

	Applied	
	Water	Concen-
Leaching	Needed	tration
Fraction	(Percent of	Factor
(LF)	ET)	(X)
0.05	105%	3.2
0.1	111%	2.1
0.15	118%	1.6
0.2	125%	1.3
0.25	133%	1.2
0.3	143%	1
0.4	167%	0.9
0.5	200%	0.8
0.6	250%	0.7
0.7	333%	0.6
0.8	500%	0.6

Applied water needed = 1/(1-LF)Ayers, R.S., D.W. Westcot. Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29 Rev. 1, Reprinted 1989, 1994. http://www.fao.org/DOCREP/003/T0234E/T0234E00.htm

maintain desired rootzone salinity

Leaching fraction required over long-term irrigation with a given salinity of water to obtain a desired rootzone salinity. (Ignoring precipitation/dissolution reactions in the soil.)

Irrigation							
Water EC		Desir	ed Ave	rage Ro	otzone	ECe	
(dS/m)	1	2	3	4	5	6	
0.1	0.01	0.00	0.00	0.00	0.00	0.00	0.0
0.4	0.07	0.02	0.01	0.01	0.01	0.00	0.0
0.8	0.23	0.07	0.04	0.02	0.02	0.01	0.0
1.2	0.44	0.14	0.07	0.05	0.03	0.02	0.0
1.6		0.23	0.12	0.07	0.05	0.04	0.0
2.0		0.33	0.17	0.10	0.07	0.05	0.0
2.4		0.44	0.23	0.14	0.10	0.07	0.0
2.8			0.29	0.18	0.13	0.09	0.0
3.2			0.36	0.23	0.16	0.12	0.0
3.6			0.44	0.27	0.19	0.14	0.1
4.0				0.33	0.23	0.17	0.13
4.4				0.38	0.26	0.20	0.1
4.8				0.44	0.30	0.23	0.18
5.2					0.35	0.26	0.20
5.6					0.39	0.29	0.23
6.0					0.44	0.33	0.2
6.4						0.36	0.2
SOLVING FO	OR DESIRE	D LEACHIN	G FRACTI	ON DIRECT	TLY:		

Regressing the rootzure sammy some to solve for Leaching Fraction (LF): LF = 0.326 (Desir

Calculated feet to hours

- Gallons to apply = depth of water (inches) x (trees per acre) X (0.622 gal/in. ft²)
- Depth of water inches = 0.98 feet x 12 inches per foot = 11.8 inches
- Acre inches per hour = (trees per acre) x (gph output per tree) ÷ 27,154 gallons per acre-inch)
- 128 trees x 8 gph ÷ 27,154 gallons = **0.038 acre in/hr**

11.8 inches ÷ 0.038 in/hr = 310 hours or 13 days

University of California Agriculture and Natural Resource

Monitoring progress with continuous soil EC measurements:

The effect of micro-spray application of non-saline water on soil electrical conductivity (EC) at different depths in 2002 pistachio block near Firebaugh 2020

12.0

12.0

12.0

12.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.0

13.

Tree health in saline conditions summary.....

 Pistachio is more tolerant than other tree crops but elevated salinity degrades soil structure, decreases water uptake, stunts growth, eventually accumulates salt in tissues and decreases nut crop quality

> University of California Agriculture and Natural Resour

Tree health in saline conditions summary.....

- Keep soil salt levels below 4.5 dS/m
- Soil and water sample
- First address sodicity then salinity
 - Fall apply gypsum before rain and leaching
- Best approach: leach salts in dormant period -lowest ET and maximum salt accumulation post season
- If possible complete leaching before spring root flush

	THANK YOU!
	QUESTIONS?
9 th /dva	ances in Stachio Production
