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SUMMARY. Migratory waterfowl are the primary reservoir of avian influenza viruses (AIV), which can be spread to commercial
poultry. Surveillance efforts that track the location and abundance of wild waterfowl and link those data to inform assessments of
risk and sampling for AIV currently do not exist. To assist surveillance and minimize poultry exposure to AIV, here we explored the
utility of Remotely Sensed Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with land-
based climate measurements (e.g., temperature and precipitation) to predict waterfowl location and abundance in near real-time in
the California Central Valley (CCV), where both wild waterfowl and domestic poultry are densely located. Specifically, remotely
collected MODIS and climate data were integrated into a previously developed boosted regression tree (BRT) model to predict and
visualize waterfowl distributions across the CCV. Daily model-based predictions are publicly available during the winter as part of
the dynamic California Waterfowl Tracker (CWT) web app hosted on the University of California’s Cooperative Extension
webpage. In this study, we analyzed 52 days of model predictions and produced daily spatiotemporal maps of waterfowl
concentrations near the 605 commercial poultry farms in the CCV during January and February of 2019. Exposure of each poultry
farm to waterfowl during each day was classified as high, medium, low, or none, depending on the density of waterfowl within 4
km of a farm. Results indicated that farms were at substantially greater risk of exposure in January, when CCV waterfowl
populations peak, than in February. For example, during January, 33% (199/605) of the farms were exposed for �1 day to high
waterfowl density vs. 19% (115/605) of the farms in February. In addition to demonstrating the overall variability of waterfowl
location and density, these data demonstrate how remote sensing can be used to better triage AIV surveillance and biosecurity
efforts via the utilization of a functional web app–based tool. The ability to leverage remote sensing is an integral advancement
toward improving AIV surveillance in waterfowl in close proximity to commercial poultry. Expansion of these types of remote
sensing methods, linked to a user-friendly web tool, could be further developed across the continental United States. The BRT
model incorporated into the CWT reflects a first attempt to give an accurate representation of waterfowl distribution and density
relative to commercial poultry.

RESUMEN. Las aves acuáticas migratorias son el principal reservorio de los virus de la influenza aviar (con las siglas en inglés
AIV), que pueden transmitirse a la avicultura comercial. Actualmente no existen esfuerzos de vigilancia que rastrean la ubicación y
densidad de poblaciones de aves acuáticas silvestres y que vinculen esos datos para informar evaluaciones de riesgo y muestreo para
influenza aviar. Para ayudar a la vigilancia y minimizar la exposición de la avicultura comercial a influenza aviar se exploró la
utilidad de las imágenes satelitales por espectrorradiómetro de imágenes con resolución moderada (con las siglas en inglés MODIS)
y de detección remota en combinación con mediciones climáticas terrestres (por ejemplo, temperatura y precipitación) para
predecir la ubicación y densidad de aves acuáticas prácticamente en tiempo real en el Valle Central de California (CCV), donde
tanto las aves acuáticas silvestres como las aves domésticas están densamente ubicadas. Especı́ficamente, los datos MODIS y
climáticos recopilados de forma remota se integraron en un modelo de árbol de regresión reforzado (BRT) desarrollado
previamente para predecir y visualizar la distribución de las aves acuáticas en el Valle Central de California. Las predicciones diarias
basadas en modelos están disponibles públicamente durante el invierno como parte de la aplicación dinámica en el del rastreador de
aves acuáticas de California (California Waterfowl Tracker, CWT) ubicada en la página de internet de Extensión Cooperativa de la
Universidad de California. En este estudio, se analizaron 52 dı́as de predicciones del modelo y se produjeron mapas espacio-
temporales diarios con densidades de aves acuáticas cerca de las 605 granjas avı́colas comerciales en el Valle Central de California
durante enero y febrero de 2019. La exposición de cada granja avı́cola a las aves acuáticas durante cada dı́a se clasificó como alta,
media, baja o nula, dependiendo de la densidad de aves acuáticas dentro de los cuatro kilómetros de una granja. Los resultados
indicaron que las granjas tenı́an un riesgo sustancialmente mayor de exposición en enero, cuando las poblaciones de aves acuáticas
en el Valle Central de California alcanzan su punto máximo, en comparación con febrero. Por ejemplo, durante enero, el 33%
(199/605) de las granjas estuvieron expuestas durante más de un dı́a a una alta densidad de aves acuáticas frente a un 19% (115/
605) de las granjas en febrero. Además de demostrar la variabilidad general de la ubicación y densidad de las aves acuáticas, estos
datos demuestran cómo se puede utilizar la teledetección para clasificar mejor los esfuerzos de bioseguridad y vigilancia para la
influenza aviar mediante la utilización de una herramienta funcional basada en una aplicación en el internet. La capacidad de
aprovechar la teledetección es un avance integral hacia la mejora de la vigilancia para influenza aviar en aves acuáticas en las
proximidades de la avicultura comercial. La expansión de estos tipos de métodos de teledetección, vinculados a una herramienta en
el internet que es fácil de usar, podŕıa desarrollarse aún más en los Estados Unidos continentales. El modelo de árbol de regresión
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reforzado incorporado en el sistema de rastreo de aves acuáticas de California refleja un primer intento de brindar una
representación precisa de la distribución y densidad de las aves acuáticas en relación con las aves comerciales.

Key words: avian influenza, geospatial data, moderate resolution imaging spectroradiometer, poultry, remote sensing, waterfowl

Abbreviations: AIV ¼ avian influenza virus; BRT ¼ boosted regression tree; CSV ¼ comma-separated values; HPAI ¼ highly
pathogenic avian influenza; MODIS¼Moderate Resolution Imaging Spectroradiometer; CCV¼California Central Valley; CWT
¼ California Waterfowl Tracker; EO ¼ Earth observations; NASS ¼ National Agriculture Statistics Service; NFC ¼ National
Flyway Council; NWRS ¼ National Wildlife Refuge System; NEXRAD ¼ next generation radar; NPIP ¼ National Poultry
Improvement Plan; PRISM ¼ Parameter-elevation Relationships on Independent Slopes Model; USDA ¼ United States
Department of Agriculture; USFWS ¼ U.S. Fish and Wildlife Service; USGS ¼ U.S. Geological Survey

Waterfowl migrate thousands of miles between wintering and

breeding locations and have long been accepted as the natural

reservoirs for LP (low pathogenic) and HP (highly pathogenic) avian

influenza viruses (AIVs) (1,2,3,4,5,6,7). Both LP and HP AIVs can

have a significant effect on commercial poultry morbidity and

mortality. For example, the 2015 highly pathogenic avian influenza

(HPAI) outbreak in North America represented the largest domestic

animal disease outbreak in United States history, resulting in the loss

of 48 million birds due to illness and culling and over US$3 billion

in industry loss and federal expenditures to cover depopulation

efforts (1).

Current national surveillance of AIV in commercial and backyard

poultry is extensive temporally and spatially as part of the National

Poultry Improvement Plan (NPIP) (2), and diagnostic laboratories

in various states have passive AIV surveillance testing approaches.

However, the waterfowl source population remains relatively under-

surveilled. Specifically, in 2018 the U.S. Department of Agriculture

(USDA) discontinued hunter-killed check station–based surveillance

for AIVs in the continental United States. This change significantly

reduced the ability to monitor AIV presence and subtype during the

fall and winter, as outlined in the 2015 U.S. Interagency Strategic

Plan led by the U.S. Geological Survey (USGS), U.S. Department of

Food and Agriculture (USDA), U.S. Fish and Wildlife Service

(USFWS), National Wildlife Refuge System (NWRS), and the

National Flyway Council (NFC) (3).

Millions of waterfowl (about 60% of waterfowl in the Pacific

Flyway and 18% continentally) use the CCV as a wintering location

(4,5) because of climate, abundant habitat, and food resources (Fig.

1). Prevalence estimates have shown that between 5%–20% of

migrating waterfowl in California shed AIV (6). The presence of

waterfowl and their wetland habitats near poultry are suspected to

increase AIV transmission risk in the United States and globally (7).

Therefore, AIV risk analysis and preventative planning that accounts

for spatiotemporal risk factors have been identified as a high priority

in protecting poultry across the United States (8,9,10).

Frequent and high-resolution geospatial data predicting waterfowl

location and abundance would enhance assessment and management

of AIV transmission risk to commercial poultry operations.

Although various remote sensing and land-based geospatial data

exist and are open source, their application for managing exposure to

waterfowl is nascent. Examples of datasets include Moderate

Resolution Imaging Spectroradiometer (MODIS) and Landsat

Thematic Mapper satellite imagery, used to detect surface moisture

and land cover composition (i.e., habitat), and the Parameter-

elevation Relationships on Independent Slopes Model (PRISM)

Climate Group’s land-based temperature and precipitation data

(11,12). We previously used these datasets as spatially explicit

predictors in a boosted regression tree (BRT) model (described in

Materials and Methods) to better understand the presence-absence

and density of waterfowl in the CCV during the high waterfowl

density months of November to March as the basis for the

California Waterfowl Tracker tool (13).

In this study, we explore a framework for using high-resolution

and frequently updated spatially explicit data to help assess potential

risk of poultry exposure to AIV via proximity to waterfowl in the

CCV. Specifically, we analyzed the spatiotemporal relationship of

potential exposure risk with 605 commercial poultry farms in the

CCV over a 52-day period during January and February of 2019.

MATERIALS AND METHODS

Location data for poultry farms. In our analysis, we obtained 605
geocoded addresses of commercial poultry farms across the CCV from a
state agency. For privacy purposes, point data were transformed into
aggregate data at the county level, with the choropleth function via
ArcGIS Pro (14) using government maps at the county level (Figs. 2, 3).
The CCV is the major poultry production area in California and
spatially overlaps with the majority of migratory and nonmigratory
waterfowl in the California portion of the Pacific Flyway. Hence, the
potential exposure of AIV from waterfowl to domestic commercial
poultry is relatively high.

California Waterfowl Tracker. The CWT (13) is an interactive
web-based mapping tool that provides near real-time raster maps, at
250-m spatial resolution, of predicted waterfowl density within the
CCV. The CWT leverages a suite of 25 BRT models trained on
archived weather-surveillance radar (i.e., NEXt generation RADar
[NEXRAD]; National Weather Service) observations of waterfowl for
the winters (November through February) of 2008–2017 from three
NEXRAD stations, KDAX (Sacramento, CA), KBBX (Beale Air Force
Base, CA), and KHNX (Fresno, CA) (15). The BRT models were
trained from radar data of daily waterfowl densities aloft sampled at the
instantaneous peak of evening feeding flight exodus (i.e., near the end of
civil twilight) as birds departed diurnal roosting habitats following Buler
et al. (15). Waterfowl densities are measured as the total, cross-sectional
reflective area of birds in the airspace over the ground in units of cm2/ha
at a 250 3 250-m spatial resolution within radar domains. We
partitioned the observed radar data into 25 subset groups of grid cells
separated by 5 km distance on which to run the 25 modeling iterations
to reduce spatial autocorrelation and allow assessing uncertainty across
model predictions. The BRT models explained a mean of 53% of the
variance in waterfowl density via cross-validation. The BRTs predict
mean waterfowl density for each target day using environmental data
from a 30-day window prior to the target day for each 250-m grid cell
within the CCV. We provide maps of the daily predictions averaged
across the 25 models.

The seven environmental predictor variables of the BRT model are
(in order of descending relative importance): soil wetness index, total
precipitation for 30 days prior, mean maximum daily temperature,
mean daily temperature, month of year, proportion of rice cover flooded
during the prior 30 days, and proportion of permanent wetland cover.
We estimated soil wetness using the MODIS reflectance data product
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Fig. 1. This map identifies waterfowl habitat distributions in the CCV using various data including soil wetness and surface water flooding.
Primary waterfowl habitats, including dry corn fields, flooded rice and corn fields, and flooded wetlands in the CCV, are used by waterfowl during
the winter. Other, less-frequently used land cover includes lakes, other cropland, and urban landscapes. Flooded rice fields are predicted to receive the
greatest intensity of use for roosting by waterfowl. Dry agricultural fields (e.g., rice and corn) provide habitat for feeding. The map was derived using
cropland and open water land cover data from Cropscape (USDA) (18), wetlands land cover data from the Central Valley Joint Venture (28), and
tasseled cap transformed MODIS data (16).
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Fig. 2. Choropleth map of commercial poultry farms by county in the CCV overlayed with proportional symbology representing the number of
occurrences any given farm was included in a high-density waterfowl area during January of 2019.
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Fig. 3. Choropleth map of commercial poultry farms by county in the CCV overlayed with proportional symbology representing the number of
occurrences any given farm was included in a high-density waterfowl area during February of 2019.
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MCD43A4 V006 (Nadir BRDF-Adjusted Reflectance) obtained from
the USGS’s Land Processes Distributed Active Archive Center
(LPDAAC). The MCD43A4 V006 contains seven reflectance bands
averaged over a 16-day window at 500-m resolution. We used tasseled
cap transformations for MODIS data as described by Lobser and Cohen
(16) via the Tasseled Cap function from the R package MODIS (17) to
derive wetness indices. We obtained total precipitation and mean and
maximum temperature for each of 30 days prior to prediction day from
the PRISM Climate Group (11,13). For characterizing the proportion
of rice and wetland composition within grid cells, we used the geospatial
Cropland Data Layer (year 2019) from the USDA and National
Agriculture Statistics Service (NASS) (18). Flooded rice fields are often
easy to delineate from aerial photos because the field boundaries are
rather discrete. Therefore, following Sieges et al. 2014 (19), we visually
inspected the MODIS soil wetness imagery overlaid with NASS crop
maps and aerial images of open surface-water conditions (flooded soil)
to determine that areas having index values greater than �0.125 were
flooded.

Through the online interface, users can upload a delimited, comma-
separated values (CSV) file containing geocoded areas of interest. A
built-in data processing feature allows for the locations to be paired with
mean predicted waterfowl density estimates within 4 km of each of the
given geocoded locations for the previous 28 days. In this fashion we
used the CWT to assess daily variability in nearby 2 waterfowl densities
for the 605 farms in the CCV for the study period of January–February
2019.

Data processing. We generated predicted daily waterfowl density
raster maps for the CCV between January and February of 2019 for the
CWT. We processed map data with ArcGIS Pro (14) and computed
diagnostic frequency-based statistics (14,20). Predicted waterfowl
density data within each grid cell was first classified into 4 classes: none
(,1.0 cm2/ha), low (1.0 – 2.5 cm2/ha), medium (2.5 – 15.0 cm2/ha),
and high (.15.0 cm2/ha). We determined these classes by dividing the
distribution of values above a minimum threshold of 1 cm2/ha for
reflectivity of waterfowl exodus into three approximately equal quantiles.
We used this minimum threshold based on visually matching the
footprint of reflectivity to the boundary of known wetland areas used by
waterfowl. Next, the categories of predicted waterfowl density (i.e.,
potential risk of waterfowl exposure) within a 4-km radius window
around each grid cell were calculated using the average feeding flight
distance of waterfowl in the CCV (21). The CWT interfaces with
ArcGIS to extract and store the most recent 28 days of PRISM and
MODIS data to use in BRTs for modeling waterfowl densities. Using
geocoded locations on a CSV file, data were recorded for 52 total days,
for each day at each specific geocoded location.

We derived the statistics in Table 1 by compiling the frequencies of
each occurrence of high, medium, low, and none for each of the 605
farms (22,23). Percentages were calculated based on the average mean
equation

P
of occurrences per farm

number of days � the studyð52 daysÞ

� �
3 100;

where one occurrence¼ 1 day in a category and farm¼ farm boundary
for each of the given categories. We compiled Figures 2 and 3 with
ArcGis Pro by overlaying the frequency of high occurrences for each
farm.

RESULTS

Data management. Due to server errors, we could not predict
seven of the intended 59 days and these data were not recorded.
Omitted dates include Jan. 1,18,19,20 (4/30 days) as well as
February 5,6,28 (3/28 days).

Temporal variation in waterfowl densities near poultry. Spatially
explicit waterfowl density varied substantially among poultry farms
(Table 1; Figs. 2, 3), geography-climatic conditions (Figs. 4, 5), and
day (Fig. 6). Density and distribution of waterfowl near commercial
poultry farms changed as a function of time (Table 1) and climatic
conditions according to BRT predictive modeling. Reflecting this
variability during the study period, 41% (248 farms) of the 605
farms spent at least one day in a ‘high’ waterfowl density area and
98% (593 farms) spent at least one day in ‘low,’ and 100% (605
farms) spent at least one day in the ‘none’ waterfowl density area.

While none of the 605 farms spent the entire study period of 52
days in one of the high, medium, or low categories, 2% (11 farms)
of the 605 farms spent the entire study period in the none category.
The maximum days a facility spent in the high, low, and none
categories were 43 days (83% of the study period), 20 days (39% of
the study period), and 52 days (100% of the study period),
respectively.

In January, although farms infrequently corresponded with
locations of very high waterfowl density (3% of days on average),
farms frequently corresponded with moderate to low waterfowl
densities on approximately 40% of the days (Table 1). Even though
farms infrequently corresponded with high densities of waterfowl,
many farms (33%) were in relatively high (33%) to moderate risk
(83%) areas on at least one day during January (Table 1). Relatively
high densities for January were seen between the 23rd and 27th
(Figs. 4, 6).

In February, the mean percentage of time that farms spent in the
medium and low categories was lower than in January (Table 1).
Likewise, the percentage of farms that spent at least one day in the
high, medium, or low categories in February were lower than in
January (Table 1). Relatively high densities for February were seen
between the 12th and 17th when the frequency of high-density
occurrences peaked, whereas frequency of high density was relatively

Table 1. Percentage of farms and duration (days) that corresponded with high, medium, low, and none densities of waterfowl in the CCV
during January and February of 2019. Farm locations were intersected with spatially explicit waterfowl distributions predicted daily with a BRT
model.

Metrics of farm-waterfowl correspondence Waterfowl density categories January–February study period January February

Mean percent of time in days of farm in each density category High 3 3 3
Medium 13 21 6
Low 15 18 13
None 69 65 78

Percent of farms spending at least 1 day in each density category High 41 33 19
Medium 82 83 42
Low 98 94 73
None 100 99 100
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low the rest of the month with a small peak again toward the end of

the month between February 22 and 24 (Figs. 5, 6).

Figures 4a–e and 5a–e show the daily BRT-predicted waterfowl

distribution provided by the CWT for January 23 and 27 and

February 13 and 17; these reflect the highest overall density and

distribution of waterfowl during the months of January and

February, respectively (Fig. 6). The geographic variability of those

waterfowl can be seen in Figures 4 and 5. The variability reflects

changes in the seven environmental predictor variables of the BRT

model.
Spatial variation in waterfowl density near poultry. For the entire

study period, the northern and central parts of the CCV had the

highest waterfowl activity (Figs. 4, 5). At the county level and with

respect to poultry farms, central CCV farms within Stanislaus (211

farms), Fresno (123 farms), and Merced (108 farms) counties were

near the highest density of waterfowl during January (Fig. 2). In

contrast, waterfowl densities were generally lower near farms in

southern CCV counties, such as Tulare (26 farms) and Madera (24

farms; Fig. 2). Although waterfowl density was relatively lower near

farms in February, some farms in Stanislaus and Merced counties

had some of the highest densities of waterfowl in February seen

during the entire study period.

DISCUSSION

From a biosecurity perspective, the overall spatiotemporal

variability of waterfowl concentrations (Table 1, Figs. 2–6) as an

index of AIV exposure risk to poultry farms demonstrates that the

static surveillance approaches currently employed by the NPIP for

commercial poultry, and the 2015 U.S. Interagency Strategic Plan

for waterfowl, are not optimal. Results specifically indicated that
farms differ markedly in their proximity to waterfowl across space
and time during the winter months. Frequently updated dynamic
maps of waterfowl distributions could be used to triage risk of
exposure to AIV among poultry farms and allow a near real-time
response to risk. The vast majority (82%) of farm locations
corresponded with moderate or high waterfowl densities on at least 1
day, mostly during the last week of January (Fig. 6). Correspon-
dence of high waterfowl densities with farms is relatively temporary
(3% of days on average during January and February in 2019).
However, 3 of the 4 days that lacked data in January (1/18–1/20)
because of server errors occurred 3 days before the 1/23–1/27
moderate-high waterfowl density event, and so the number of
moderate or high-density days may have been slightly underesti-
mated.

From a biosecurity perspective, producers should consider the best
way to utilize the CWT and the associated data during the relatively
short time of peak risk. For example, organic producers, which in
the United States are required to provide outdoor access to their
flocks, could increase their biosecurity by keeping their birds indoors
via an exemption from regulators.

During the study period, the predicted waterfowl density near
poultry farms was greater in January than in February, with the
waterfowl distribution and density localized in the northern CCV.
This observation makes sense from a waterfowl habitat perspective,
as demonstrated by Figure 1, which identifies waterfowl habitat
distributions in California. Of the seven predictive variables
integrated into the BRT predictive model, the soil wetness index
was identified as the most important variable in predicting waterfowl
use. Specifically, the majority of the waterfowl habitat in the CCV is
in the northern and central parts of the CCV (Fig. 1). However, it is

Fig. 6. Frequency of the 605 commercial farms in the high, medium, low, and none waterfowl density categories for each of the 52 days during
January and February of 2019. The gaps represent the days with missing data.
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also important to recognize that Figure 1 primarily reflects
permanent and semipermanent habitat. Conditions such as seasonal
rains can create temporarily flooded habitat for waterfowl. Static
waterfowl habitat maps do not capture this habitat variability in
contrast to the BRT predictive waterfowl maps in Figures 4 and 5,
which show daily geographic changes in waterfowl distribution and
density. Hence, the ability to make daily predictions is a critical
function of the CWT and for the assessment of relative AIV
exposure risk to commercial poultry.

While infectious agents like AIVs transmitted between wildlife
and commercial poultry are considered a threat to poultry
production and food security globally, current surveillance and risk
analysis efforts are limited. The use of remote sensing technologies,
including satellite imagery and land-based surface sensors, in food
animal agriculture is relatively nascent in contrast with its use for
crop-based agriculture (24,25). The BRT model incorporated into
the CWT reflects a first attempt to give an accurate representation of
waterfowl distribution and density relative to commercial poultry.
We anticipate future use of the CWT to help triage AIV testing as
opposed to the swabbing of waterfowl based on a static surveillance
model developed as part of the 2015 U.S. Interagency Strategic Plan
(3). The ‘‘needle in the haystack’’ and convenience-based static
surveillance are costly, time consuming, and epidemiologically
unsound. The application of validated statistical models that use
updated predictor variables to create spatiotemporally explicit
models is one potential method toward the development of a robust
risk-based model. Even then, the output must be available in a
unifying and user-friendly format, such as the CWT, in order to
enable stakeholder understanding of the risk landscape.In its current
form, the CWT only predicts waterfowl distributions and densities
in near real-time between November and March, which represents
the period when waterfowl in the Pacific Flyway winter in the CCV.
While the CWT does not identify the species, age, or presence-
absence of AI in waterfowl, it provides important information that
could be used by farmers and other stakeholders to triage husbandry
and biosecurity efforts relative to the presence and density of
waterfowl. In addition, while the presence of these habitats may
support waterfowl now, the removal of these habitats that resulted
from climate change, water management, or conversion to other
land uses, or the addition of habitat resulting from conservation
programs, will likely affect distribution, density, and proximity to
commercial poultry in the CCV. To that point, the CWT could be
an invaluable tool toward understanding how these changes affect
the spatiotemporal relationship between commercial poultry and
waterfowl. The collection of multiple years of data will be critical
toward understanding potential trends in waterfowl movements.

It is also important to recognize that the BRT model does not
integrate other risk factors including husbandry, biosecurity
practices, AIVs persistence in the environment, and other avian
bridge hosts that may be carriers of AIVs. While proper biosecurity
is not a novel technology, it is a fundamental aspect of flock
management and disease prevention. Using the CWT could be an
additional tool used by producers and stakeholders to better assess
risk and complement husbandry and biosecurity practices. For
example, a producer could use this information to better select
future operations and husbandry types. Additionally the CWT could
be used to facilitate targeted sampling of the environment for AIVs
to better understand environment as a risk factor (26).

Despite CWT capabilities, its prediction of waterfowl density and
distribution and risk assessment for poultry farms could be improved

and requires additional evaluation. Future efforts can improve
modeling of waterfowl distributions within the CCV. For example,
while the BRT model used was constructed using historical radar
observations from 2008–2017, automated processing of radar data
in near real-time would allow continuous training and updating of
the BRT model to improve model predictions. Additionally, USGS
scientists have developed extensive telemetry datasets (year 2015–
ongoing) that track locations of individual waterfowl in the CCV
and across the Pacific Flyway. These telemetry data include
approximately 890 ducks of 10 species and 240 geese of four
species-subspecies, and .8 million point locations (Matchett, pers.
comm.). The advanced telemetry used provides very high-resolution
(,10 m) accuracy and frequent location data of tagged waterfowl
(22,26). Both radar and telemetry data streams are in the process of
being integrated into the CWT to provide further insights about
waterfowl distributions throughout the day and year.

With respect to risk analysis, our results indicate that AI risk
analysis and preventative planning that accounts for local waterfowl
activity is a high priority for the protection of poultry across the
United States. The application of this approach across the United
States could include the utilization of climatologically aided
interpolation of the over 10,000 PRISM surface stations across the
United States (6). With respect to Earth observations (EO), the
number of EO-based satellites is increasing at an astonishing pace,
from 192 in 2014 to 684 EO-based satellites in 2018 (23). In
addition, as these satellites move from a geo-polar orbit to a geo-
stationary orbit, continuous imaging of the entire earth becomes a
more realistic option. Particularly interesting is the adoption of
cubesats (i.e., small boxy satellites weighing a few kilograms each)
for which, due to their small size, dozens can be put into orbit
during a single launch, thereby reducing cost and making custom
collection of data for different projects viable. These networked
satellites facilitate the imagery of the entire Earth’s surface multiple
times/day (27).

Lacking the ability to understand the dynamic spatiotemporal
relationship between poultry farms and their proximity to waterfowl
and waterfowl habitat, producers and stakeholders have few options
other than biosecurity and NPIP-based surveillance. Although
remote sensing of waterfowl does not provide a comprehensive risk
analysis with respect to AIV, the use of remote sensing tools are
highly understudied in AIV risk analyses. The ability to use remote
sensing to guide AI sampling in waterfowl has previously been
demonstrated (26). The application of approaches that integrate
risk-based surveillance with models that utilize various modes of EO
will likely play a role in AIV surveillance over the coming decades in
the poultry industry.
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