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When can we estimate yield?
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Continuous loss of yield potential is
a result of many fixed factors:

-soil, orchard age, variety,
geographical location etc..

semi-stochastic factors:
-temperature, rainfall, pathogens,
occurrence of fires etc...

and applied practices:
-irrigation, fertilizations, pest
management plan, etc...



When can we estimate yield?

We can estimate yield anytime, however our estimate will have a significant error related to semi-stochastic factors

Yield estimate The more information about the orchard we have
the smaller is the error of yield estimate especially
if information is relevant to the vyield.

error Thus, finding factors that are correlated with yield

is an important step in constructing yield

Yield estimate prediction models.

error ® Realized yield

Previous Winter Spring  Summer Harvest Time
year fall

More information related to yield



We can also check for correlations between other factors,

H OoOw Can we p rediCt yle I d ? like soluble sugars or starch in September, October,

First, we can look for factors that correlate with yield. November, ... and yield.
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HOW can we pred|ct y|e|d? We can add other factors:

Each correlation has large error. However, X & ,5@
. . . . . \(\o A Q} )
if we combine the correlations into a single A < @Q A\e
model and if factors are relatively %
independent, there is a high probability \QQ}
that we can reduce error of yield estimate \§° A
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How can we predict yield?

We need help of ‘deep learning’ that is multidimensional combinations of linear fits and estimation of parameters
of a complex linear model. It is linear correlation on steroids.

Yield(model) = a(1)*factor(1) + a(2)*factor(2) + .... + a(n)*factor(n)

Or if this does not help we can use artificial intelligence algorithms that
have ability to test for combination of seemingly unrelated factors and
events into a coherent model

Regression Model MAE______[MmsE_________|RwSE________|

Yield(model) ~ Yield(real) ------ estimate error
Change a(i)s and see if program notices
improvement, it keeps new parameters

and iterates till no improvement occurs.

This part is called model training.

There are ~200 methods and algorithms to perform
this analysis.

Extreme Gradient Boosting
Gradient Boosting Regressor
AdaBoost Regressor

CatBoost Regressor

Random Forest

Extra Trees Regressor

Light Gradient Boosting Machine
Huber Regressor

Support Vector Machine
Bayesian Ridge

Orthogonal Matching Pursuit
Lasso Least Angle Regression
K Neighbors Regressor

Lasso Regression

Ridge Regression

Decision Tree

Passive Aggressive Regressor
Random Sample Consensus
Linear Regression

heilSen Regressor
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How can we predict yield?

Feature

December total N5C e

Orchard age S e Ze - o
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March starch in wood
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November sugar in wood

February total NSC

~1000 —500 0 500 1000
SHAP value (impact on model output)

High

Low

Feature value

Testing for best factors for early prediction of

yield?

Why - Potential targets for modification through

management

Here we used September - April data to determine few
most important variables that explain most variance in

yield prediction model.

Figure 4. SHAP (Shapley additi
explanation) values of features frc
FExtreme Boosting Model. Twenty 1
Jeatures with the most explanaic
power are listed with relati
importance from highest to lowe
December total NSC content in twi,
orchard age and previous year yic
are the most important variab
Jollowed by the presence of starch
bark (interestingly lower starch in bc
predicts higher yield). Feature value
red denotes high yield and in bl
denotes low yield.



How can we predict yield? Limitations

Available yield data Number of fields with known yields >> number of factors n the model

To improve estimates, we need to improve geographical coverage,
Coverage increase coverage of varieties, rootstock, age,
and years to account for yearly variation of climate

Clouds — reduced information from satellites, problems with sampling, missing
information on irrigation, fertilization, and other management practices
reduces our capacity to provide useful information on what works and what is
not working

Missing information

Impact of stochastic events Yearly variation - including the alternate bearing, weather, fires, rain distribution,
occurrence of pathogens ....



Why to predict yleld? Provides info on impact of managements practices on yield

Yield
[

Orchard maximum yield potential —ETC irrigation
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At the point (A), in fall, maximum orchard yield potential is established based on the previous yield and modeling approach. (B) This maximum yield is decreased

due to winter weather patterns and a new current year’s yield potential is determined (NSC-based yield predictive model - from this proposal). The irrigation

schedule is adapted to reflect reduced yield expectations. At harvest (C), four basic potential outcomes can be expected:

(1) Best outcome - reduced irrigation allowed to achieve the current year’s yield potential, and next year’s yield potential was not affected (D) - allows for water
saving without short- or long-term impacts on orchard performance.

(2) Moderate outcome - reduced irrigation negatively impacts current year’s yield potential but does not reduce long-term orchard maximum yield potential (D).

(3) Worst outcome - reduced irrigation negatively impacts both current year’s yield potential and the long-term orchard maximum yield potential (D)

(4) Mixed outcome - reduced irrigation achieves the current year’s yield potential but reduces long-term orchard maximum vyield potential (D).
At (E) a new year’s yield potential is established.
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Provides info on when to collect data

Impact of NSC content on pistachio yield
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Relative impartance
[

1mg of NSC in December ~ 30 pounds increase in
yield per acre

MNSC total NSC wood MNSC bark Starch in wood Starch in bark Sugar in wood Sugarin bark

Other data:
Orchards’ features: geography, age, previous yields, variety, management,
salinity etc.

Dynamic variable: weather, bloom time, etc.

http://zlab-yield-model.herokuapp.com/
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Potential impact of smoke on accumulation of NSC

W hy to p re d iCt yi e I d ? |n p|StaCh |O (smoke data analyzed by Jessica Orozco)
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There was a loss of NSC accumulation in November and December in 2020 when compared to 2019



Why to predict yield?

Many open questions:

If predicted crop is low - can we save on irrigation, fertilization, protection?

Are short term savings further reducing expected crop?

Do savings translate to lower crop in following years or orchards have short term memory?
How can we reduce loss of potential crop?

When and what can we do to maximize crop?

Can we predict how climate will impact production in 2, 5, 10 years?

How to choose future orchard sites?

It seems that having a good prediction model we can benefit pistachio industry



What we do and can you help?

What we do — we try to develop a yield prediction model using available data with beta version available on:

http://zlab-yield-model.herokuapp.com

Carbohydrate O,\bservatory

Yield prediction model - Do not use for making management decisions - model is for research purpose only

IF YOU WANT TO LEARN MORE ABOUT THE USE OF THE MODEL Please contact Zwieniecki lab for details

Model was developed on data from Central Valley California only, use of geographical locations outside the Central Valley California is not recomended

Model was trained on limited data made available to Zwieniecki lab by California growers. Model quallity would increase over time as more dat can be used in model training

‘We used weathr information from PRISM Climate group, OSU. Oct-Apr data were used to train model. If model is used before aend of April availble info from current winter is used and missing data is take from last winter.

Not all information is needed but error of prediction will increase. Privided error assume all information is entered.
Choose a species and please fill as many fields in tables as you can. Then click the (submit) button.

Initial values of carbohydrates are state averages. If you know your specific NSC contents plese edit the entries. If you do not enter location it is assumed to be lat=36, lon=-119.

Almond Pistachio Walnut



What we do and can you help?

Yield prediction model - Do not use for making management decisions - model is for research purpose only

IF YOU WANT TO LEARN MORE ABOUT THE USE OF THE MODEL Please contact Zwieniecki lab for details

Model was developed on data from Central Valley California only, use of geographical locations outside the Central Valley California is not recomended

Model was trained on limited data made available to Zwieniecki lab by California growers. Model quallity would increase over time as more dat can be used in model training

‘We used weathr information from PRISM Climate group, OSU. Oct-Apr data were used to train model. If model is used before aend of April availble info from current winter is used and missing data is

take from last winter.

Not all information is needed but error of prediction will increase. Privided error assume all information is entered.

Choose a species and please fill as many fields in tables as you can. Then click the (submit) button.

Initial values of carbohydrates are state averages. If you know your specific NSC contents plese edit the entries. If you do not enter location it is assumed to be lat=36, lon=-119.

Almond Pistachio

Information

Latitude West Coast USA latitude(32.3 49.3)
Longitude West Coast USA (-124.7,-119.7)
Last year yield in pounds per acre

oOorchard age in years

Information Oct Nov Dec Jan

NSC total in mg/DW 167 154 134 120

NSC in wood in mg/DW 184 175 155 139
Starch in wood in mg/DW 80 73 57 48

Predicted yield is [3705] pounds per acre

This is predicted yield based on data you have entered and available weather data at the time of entry

In April Accuracy=70.75 and RMSE = 820 pounds/acre

‘Walnut

Orchard data
33

-120

3000

10

Feb Mar Apr
108 102 93
122 121 111

41 45 40

The model can be improved
and you can help:

-provide information — we keep
it confidential

-send samples — as long as the
pistachio commodity supports
us, analysis is free and easy

-talk to us — express your needs,
suggest directions, share your
opinion

Talk to us (email us):
Maciej Zwieniecki
mzwienie@ucdavis.edu

Paula Guzman-Delgado
pguzmandelgado@ucdavis.edu

Jessica Orozco
jsorozco@ucdavis.edu
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Model can be improved and your help is a key component

THANK YOU

Talk to us (email us):
Maciej Zwieniecki
mzwienie@ucdavis.edu

Paula Guzman-Delgado
pguzmandelgado@ucdavis.edu

Jessica Orozco
jsorozco@ucdavis.edu
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Citizen Science — Accelerating research with help from growers

What we provide:

* Envelopes for twigs collection and shipping

* Analysis of samples

* Online database of starch level in samples

* Real-time interactive map of starch content in trees across Central Valley
* Graphical depiction of starch level for each participating orchard

lovelycoding .'l:) Ty

PACIFIC
OCEAN
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