Nitrogen Management Webtool Seminar for CCAs and Crop Consultants

What do we want from an N-management program?

Optimize fertilizer use by using in-season measurements to get a better idea of the crop nitrogen status.

What is required?

- Reducing pre-season fertilizer
 Shifting a greater percentage of fertilizer to in-season
- Soil Samples: pre-plant and at tillering
- Establishment of a Nitrogen-rich Reference Zone
- •NDVI Readings via Drone or Satellite

Principles in Wheat Biology

Concepts: Timing is key!

A. Fertilizer N applied 100% pre-plant

B. Fertilizer N applied 80% at tillering and 20% at flowering

Soil Nitrate Quick Tests

Collect a representative soil sample

Quickly determine a ballpark estimate of crop nitrogen availability

Soil Nitrate Quick Tests

IN-FIELD SOIL NITRATE QUICK TEST: CALIFORNIA GRAIN PRODUCTION

Nitrogen-rich reference zone goals

 Create a sufficiently high nitrogen zone where the crop is guaranteed to be satisfied.

 Evaluate relative 'greenness' of the field using canopy reflectance measurements

Nitrogen-rich reference zones

Plot Layout (for satellites, drones or handheld can be smaller)

180 ft

180 ft

University of California

Agriculture and Natural Resources

Nitrogen-rich reference zones

Strip Width

45 ft – Planet

100 ft -Sentinel

Will this work with satellite imagery?

Canopy Reflectance

(NDVI= Normalized Difference Vegetative Index)

Gather information on relative canopy greenness compared to reference zone

NDVI

Drone Imaging

NDVI

Trimble Greenseeker*

Collect multiple representative samples, take an average.

Other Resources for NDVI

Planet (Planet Labs PBC)

One Soil (app) uses Sentinel Satellite

NDVI: Sufficiency Index

NDVI value of the field

NDVI value of the reference zone (the happy part of the field)

NDVI: Sufficiency Index

0.67/0.73 = 0.91

In other words: the field is 91% satisfied (and could use more N)

How do we measure canopy vigor?

NDVI= 0.45

NDVI= 0.52

Sufficiency Index

0.45/0.52 = 0.87

NDVI= 0.49

NDVI = 0.52

Sufficiency Index 0.51/0.51 = 0.94

Field rate

N-rich zone

Sufficiency Index						
SI	<	0.97	=	N	deficiency possible	
SI	<	0.93	=	N	deficiency likely	

University of California
Agriculture and Natural Resources

What should we check next?

Case Study: Yolo County Wheat 2020

Webtool

https://smallgrain-n-management.plantsciences.ucdavis.edu/

Yolo County Case Study Overview

- Decent stand establishment
- Some Italian ryegrass pressure (particularly around area of previous experiment)
- Drought stress early and throughout season
- Reduced yield estimate
- Skipped top-dress application
- Net savings due to unused fertilizer

Case Study: Canopy Measurements at Tillering

11-01 to 03-15 (Yolo County; 38.8, -122.05)

12/21/2020 - Planted 2/9 SI = 0.96 2/25 SI = 0.98

Soil Test Results: 40 lb N equivalent in the soil

 Historical Precipitation —— Current Precipitation*
*8 inches less rain than normal

Sufficiency Index					
SI	<	0.97	=	Z	deficiency possible
SI	<	0.93	=	N	deficiency likely

Recommendation for Yolo County Case Study: 0 lbs additional fertilizer

University of California

Agriculture and Natural Resources The model won't generate a graph unless you manually increase the fertilizer rate in the webtool, This is what the model returns when you simulate an addition of 10 pounds of fertilizer

What actually happened?

Simulated In-season Fertilizer Application March 26th (no rain opportunity prior to that)

	Yield Average	Statistical Outcome
Field Rate (no in-season)	2253 lb/ ac	baseline
Top Dress (simulated in- season)	2415 lb/ ac	Not significantly different

Field rate

64lb Top-dress (simulation

Grower saved \$45 per acre ±

"It does not make sense to add additional fertilizer for a yield increase because it would not make a difference given the estimated range"

Webtool Important things to remember

- Adjust yields in the case of drought stress/ frost damage/ flooding:
 Grower intuition is important
- Soil quick tests expire after about a year. Using a reference 10 ppm solution can help your eyes adjust to what 10 ppm should look like
- Error bars matter: final results are insignificant if error bars reach below zero.

Helpful Links

Nitrogen Rich Reference Zones

https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=42576

Nitrogen Management Web-Tool

https://smallgrain-n-management.plantsciences.ucdavis.edu/

Nitrate Quick Test PDF (with links to different resources)

https://ucanr.edu/sites/small-grains/files/325749.pdf

Nitrate Quick Test Demonstration Video

https://www.youtube.com/watch?v=LaMxiDsov04&t=37s

Helpful Links

Climate Engine

https://app.climateengine.com/climateEngine

One Soil

https://onesoil.ai/en/

Planet

https://www.planet.com/

Thank You

Team

Mark Lundy

Taylor Nelsen

Nicholas Clark

Michelle Leinfelder-Mlles

Sarah Light

Thomas Getts

Giuliano Galdi

Anthony Fulford

Gabriel Rosa

Micah Levinson

Contact:

Michelle Leinfelder-Miles, Delta Crops Advisor UCCE San Joaquin, Yolo, and Solano mmleinfeldermiles@ucanr.edu 209.953.6100

Konrad Mathesius, Agronomy Advisor UCCE Yolo, Solano, Sacramento kpmathesius@ucanr.edu 530.218.7567

Grower Collaborators

Colin Muller

Fritz Durst

Kim Gallagher

D.T. Farming

Darrin Culp

Dennis Lewallens

