Compost for soil improvement in alfalfa

Radomir Schmidt

Land, Air and Water Resources, and Institute of the Environment, UC Davis

The Soil Ecosystem – what is it and why do we care about keeping soil healthy?

Soil is a vital living entity that sustains plants, animals,

humans and microbes!

Healthy soil provides:

- Physical stability and support
- Water (infiltration and availability)
- Filtering and buffering
- Nutrient cycling
- Habitat for biodiversity
- Carbon storage

Soil microbes

- Scale
- Diversity
- Behavior

The Southwest

1 μm

Fierer 2017 Nature Reviews: Microbiology, 15:579-590

Behavior

How do we move the microbe levers to change soil nutrient cycles?

Microbial Life Strategies

Low

High

Stress

low pH

• limited labile carbon

• high/low temperatures

moisture stress

low nutrients

Stress tolerators

- Slow growth
- auxotrophs
- few rRNA operon copies
- high substrate affinity
- EPS production

Stability

High

- nutrient supply stability
- niche diversity
- carbon use efficiency

High

- Rapid growth
- Multiple rRNA operon copies
- Low catabolic diversity
- Spore formation
- Low C:N and low C:P ratios
- high codon usage bias

Grime's competitor-stress tolerator-ruderal framework applied to soil bacterial heterotrophs.

Fierer 2017 Nature Reviews: Microbiology, 15:579-590

How do we move the microbe levers to change soil nutrient cycles?

Managing soil, managing microbes

"Hare" microbes do fine with:

- Simple nutrients
 - mineral fertilizers
- Fallow periods
 - no food source for microbes
- Tillage
 - food access

"Tortoise" and "Elephant" microbes do better with:

- Complex nutrients
 - composts and manures
- Cover crops
 - food
 - variety
- Reduced tillage
 - niche preservation

Compost as a soil amendment

- Increases soil carbon
 - Slow release of nutrients
 - steady food supply for microbes
 - o Organic compound supply
 - promotes metabolic diversity
 - feeds range of soil cycles
- Improves soil structure and water infiltration
- Compost nutrient content is important
 - o It's possible to manipulate nutrients for desired effects
- There is a threshold minimum application rate (~3 ton/acre)
- Greenhouse gas emissions reduced in many systems, details under study

Yield

- Green waste compost application at two rates
 - 3 or 6 tons/acre
- Two field sites San Joaquin and Yolo county
- Compost was applied in fall
- Alfalfa flood irrigated
- Compost treatments had similar yields to no compost controls during first season
- Increased yield with compost at San Joaquin site in second season

Yolo

Total yield 2022

Nutrients

- Green waste compost application at two rates
 3 or 6 tons/acre
- Two field sites San Joaquin and Yolo county
- Compost was applied in fall
- Alfalfa flood irrigated
- Compost treatments had similar yields to no compost controls during first season
- Increased yield with compost at San Joaquin site in second season
- Nutrients increasing trends in low OM soil,
 limited changes in high OM soil

Total soil carbon and nitrogen

Greenhouse gas fluxes

- Carbon dioxide (CO₂)
 - Year 1 higher efflux with compost
 - Year 2 similar CO₂ efflux to control
- Nitrous oxide (N₂O)
 - Similar efflux between control and compost additions
- Methane (CH₄)
 - Negative flux soils act as methane sink in high OM soils
 - Higher efflux at 3 tons/ac compost in Yolo

Year 2 efflux for Yolo and San Joaquin sites

Conclusions

- Compost application leads to improved nutrient content in poorer soils
- Similar yields in the short term, higher trends with compost
- Similar GHG fluxes with compost (particularly CO₂), consistent with more carbon stored in soil

Questions? Questions? Questions?

Questions?

Questions?

Questions?

Questions?