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The Soil Ecosystem —
what is it and why do we care about
keeping soil healthy?

Soil is a vital living entity that sustains plants, animals,

humans and microbes!

Healthy soil provides:

e Physical stability and support

e Water (infiltration and availability)
* Filtering and buffering

e Nutrient cycling

e Habitat for biodiversity

e Carbon storage




VialY Soil is a dynamic system of biogeochemical cycles driven
~ ) by microbes and powered by carbon (energy) inputs
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Soil microbes

e Scale
* Diversity
* Behavior




The Southwest
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Microaggregates

Microbes

Distinct soil environments only micrometers apart
can differ considerably in abiotic characteristics,
microbial abundance, rates of activity and
community composition. //

Fierer 2017 Nature Reviews:Microbiology, 15:579-590
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Bacteria in a teaspoon of soil
~ one billion
500 — 100,000 species
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Behavior

How do we move the microbe |levers to change soil nutrient cycles ?
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Microbial Life
Strategies

Stress

e |imited labile carbon

* low pH

* moisture stress
high/low temperatures
low nutrients

* Slow growth
auxotrophs

few rRNA operon copies
high substrate affinity
EPS production

High

Competitors

* Larger genomes

¢ Antibiotic production

¢ Filamentous growth

¢ High catabolic diversity
e Siderophore production

Low

Disturbance

* drying-rewetting

* fire

* aggregate instability
* change in redox status
* predation

Stress tolerators

High

High
Ruderals
Stability Low * Rapid growth
* nutrient supply stability * Multiple rRNA operon copies
* niche diversity * Low catabolic diversity
* carbon use efficiency * Spore formation

* Low C:N and low C:P ratios
* high codon usage bias

Grime’s competitor-stress tolerator-ruderal framework applied to soil bacterial heterotrophs.

Fierer 2017 Nature Reviews: Microbiology, 15:579-590



How do we move the microbe levers to change soil nutrient cycles ?
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Managing soil, managing microbes «)

“Hare” microbes do fine with: “Tortoise” and “Elephant” microbes do
better with:

e Simple nutrients e Complex nutrients
* mineral fertilizers e composts and manures

e Fallow periods e Cover crops




Alfalfa compost trial

Compost as a soil amendment

[
e |ncreases soil carbon

O Slow release of nutrients
= steady food supply for microbes
O Organic compound supply
= promotes metabolic diversity
= feeds range of soil cycles
e Improves soil structure and water infiltration
e Compost nutrient content is important
O It’s possible to manipulate nutrients for desired effects
e There is a threshold minimum application rate (~3 ton/acre)
e Greenhouse gas emissions - reduced in many systems, details
under study

Increasing soil carbon




Alfalfa compost trial

Yield

Green waste compost application at two rates
- 3 or 6 tons/acre

Two field sites - San Joaquin and Yolo county
Compost was applied in fall

Alfalfa flood irrigated

Compost treatments had similar yields to no
compost controls during first season
Increased yield with compost at San Joaquin
site in second season
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Alfalfa compost trial

Nutrients

Green waste compost application at two rates
- 3 or 6 tons/acre

Two field sites - San Joaquin and Yolo county
Compost was applied in fall

Alfalfa flood irrigated

Compost treatments had similar yields to no
compost controls during first season
Increased yield with compost at San Joaquin
site in second season

Nutrients - increasing trends in low OM soil,
limited changes in high OM soil
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Alfalfa compost trial

Greenhouse gas fluxes
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Carbon dioxide (CO,)
O Year 1 - higher efflux with compost
O Year 2 - similar CO, efflux to control
Nitrous oxide (N,0)
O Similar efflux between control and
compost additions
Methane (CH,)

O Negative flux - soils act as methane sink -

in high OM soils
O Higher efflux at 3 tons/ac compost in
Yolo
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Alfalfa compost trial

Conclusions

e Compost application leads to improved nutrient content in poorer
soils

e Similar yields in the short term, higher trends with compost

 Similar GHG fluxes with compost (particularly CO,), consistent with
more carbon stored in soil
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