
Communicating the Beneficial Effects of Soil Health Practices

Ellie Andrews, UCCE

How do we communicate key messages about on-farm soil health practices to buyers, consumers, other farmers, and the public? How can we use indicators to assess effects and demonstrate the value of outcomes? Here is one example exploring these questions. Thank you, Reyna Yagi, Yagi Sisters Farm, for permission to share.

Example Soil Sampling Map

Thank you, Reyna Yagi (Yagi Sisters Farm at the Permaculture Skills Center) for permission to share.

Blocks are indicated by colored outlines. Dots () indicate location of soil sample collected. Soil samples from each block were combined in a bucket, mixed, and poured into a plastic Ziplock bag for 4 bags total. All areas are loam soil according to the NRCS Soil Web Survey.

Uncultivated Soil (for comparison)

Block 2

- 2nd longest block in production
- Compost, cover crops, no till

Block 1

- Longest block in production
- Compost, cover crops, no till

Block 3

- Most recent block in production

Yagi Soil Fertility Results 2023

Dellavalle Labs, Fresno CA

No.	Description	Sat. Paste SP %	Sat. Paste pH units	Sat. Paste EC dS/m	Sat. Paste Ca meq/l	Sat. Paste Mg meq/I	Sat. Paste Na meq/l	ESP %	Sat. Paste B mg/l
	5. 1	40	6.0	2.02	100	5 0	2.0	0.0	0.0
1	Upper Bed	48	6.9	2.03	10.9	5.0	3.9	0.8	0.3
2	2nd Block	50	6.8	1.76	9.7	4.7	2.8	0.3	0.2
3	3rd Block	42	6.9	1.28	9.0	3.0	1.6	ND	0.1
4	Uncultivated	38	6.4	0.72	4.2	2.1	0.7	ND	0.1
Vegetable									
soils		Texture	pH*	salts**	Ca	Mg	Na	ESP	В
		Sand	-			_			
Low		<20	< 7.3	<1.0	< 5	< 3		< 1	0.1
Medium/			7.3 -						0.2-
Optimal		20-50	7.8	1.0- 2.0	5 - 10	1/2 Ca		1 - 4	0.5
High		Clay >50	7.8 +	2.0+	10 +	> Ca	>Ca	4 +	1.0+

		AA	Olsen	AA	DTPA	DTPA	DTPA	DTPA	
Nie	Description	Ext	Ext	Ext	Ext	Ext	Ext	Ext	084
No.	Description	NO ₃ -N	PO ₄ -P	K	Zn	Mn	Fe	Cu	OM
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
1	Upper Bed	67	108	363	21	21	98	2.1	8.30
2	2nd Block	88	118	418	28	31	98	2.9	12.40
3	3rd Block	12	115	280	11	19	100	1.5	4.90
4	Uncultivated	12	84	297	9.1	32	99	1.5	3.90
			r	r	1				
Vegetable									
soils		NO ₃ -N	PO ₄ -P	K	Zn	Mn	Fe	Cu	OM
Low		< 20	< 50	<250	< 2.5	< 2.5	<5	< 2	<1.0
Medium/		•	50 -	250-		2.5 -			
Optimal		20 - 30	60	350	2.5 - 4.5	10	5-10	2 - 4	1-3
High		30 +	60 +	350+	4.5 +	10 +	10+	4+	3+

ND = None Detected

^{*} pH values should be above 7.2 to prevent club root. Lower levels are acceptable for other than cole crops

^{**} EC values above 2 can reduce lettuce yields. EC values up to 4.0 may be tolerated *if* primarily calcium, however, yield will still likely be reduced.

Yagi Soil Microbial Results 2023

Ward Labs, Kearney NE

Sample ID	Total	Diversity	Bacteria	Total Bacteria	Total	Total Fungi
	Biomass	Index	%	Biomass	Fungi %	Biomass
UPPER BED	4584.85	1.538	47.35	2171.10	15.91	729.44
2ND BLOCK	4488.67	1.556	45.85	2058.24	20.94	939.77
3RD BLOCK	4567.09	1.582	45.18	2063.33	20.43	933.12
UNCULTIVATED	3091.25	1.534	44.53	1376.44	16.70	516.16

Sample ID	Gram (-) %	Gram (-) Biomass	Gram (+) %	Gram (+) Biomass	Rhizobia %	Rhizobia Biomass	Actinomycete %	Actinomycete Biomass
UPPER BED	21.20	972.09	26.15	1199.02	0.00	0.00	9.87	452.44
2ND BLOCK	19.39	870.23	26.47	1188.01	0.00	0.00	10.56	473.78
3RD BLOCK	18.76	856.89	26.42	1206.45	0.00	0.00	10.97	501.22
UNCULTIVATED	16.17	500.00	28.35	876.43	0.00	0.00	11.20	346.37

Sample ID	Arbuscular Mycorrhizal %	Arbuscular Mycorrhizal Biomass	Saprophytic %	Saprophytes Biomass	Protozoan %	Protozoa Biomass
UPPER BED	5.47	250.79	10.44	478.65	0.31	14.26
2ND BLOCK	5.39	241.99	15.55	697.78	0.29	13.00
3RD BLOCK	5.93	270.61	14.51	662.51	0.52	23.79
UNCULTIVATED	4.59	141.85	12.11	374.31	0.00	0.00

Sample ID	Undifferentiated	Undifferentiated	Fungi:	Predator:	Gram(+):
	%	Biomass	Bacteria	Prey	Gram(-)
UPPER BED	36.43	1670.04	0.336	0.0066	1.2334
2ND BLOCK	32.92	1477.67	0.4566	0.0063	1.3652
3RD BLOCK	33.87	1546.82	0.4522	0.0115	1.4079
UNCULTIVATED	38.78	1198.65	0.375	ALL PREY	1.7529

Mention of lab names does not constitute an endorsement, simply examples. All data is shared with permission of the grower.

Yagi Soil Structural Assessments 2023

Bulk Density

Average Soil Bulk Density (grams of dry soil per cubic cm)

UPPER BED 0.77
2ND BLOCK 0.64
3RD BLOCK 0.95
UNCULTIVATED 0.87

Water Infiltration Rate

Average rate of water infiltration (seconds) within metal ring

UPPER BED 16
2ND BLOCK 19
3RD BLOCK 34
UNCULTIVATED 72