

Soil Organic Matter and its Contribution to Plant Available Nitrogen

Daniel Geisseler

Nutrient Management Specialist, UC Davis

SJC and Delta Field Crops Meeting January 12, 2024

Plant available N in soil

Residual soil nitrate:

- Directly available form of N.
- Origin:
 - Mineralization of organic N in spring
 - Left over fertilizer N from previous crop

Potentially available N:

- Nitrogen mineralized during the season from soil organic matter and other sources
- Estimates based on:
 - Laboratory studies
 - Field trials

Plant available N in soil

Residual soil nitrate:

- Directly available form of N.
- Origin:
 - Mineralization of organic N in spring
 - Left over fertilizer N from previous crop

Potentially available N:

- Nitrogen mineralized during the season from soil organic matter and other sources
- Estimates based on:
 - Laboratory studies
 - Field trials

Residual soil nitrate

In soil samples taken in April, residual soil nitrate-N ranged from 5-97 ppm in the top foot.

How much is that?

- A factor of 4 is often used to convert ppm to lb/ac in a 1-ft layer
- This conversion factor is too high for Delta soils with a high soil organic matter content.

Bulk density of Delta soils

Converting ppm nitrate-N to lb N/acre per foot

Can we predict residual soil nitrate?

Residual nitrate N ranged from 20 to 120 lb/acre in the top foot

Plant available N in soil

Residual soil nitrate:

- Directly available form of N.
- Origin:
 - Mineralization of organic N in spring
 - Left over fertilizer N from previous crop

Potentially available N:

- Nitrogen mineralized during the season from soil organic matter and other sources
- Estimates based on:
 - Laboratory studies
 - Field trials

What is N mineralization?

- Soil microorganisms decompose organic matter
- They need N and C as building blocks for their own biomass
- C is also used as energy source
- N mineralization: Release excess N in the form of NH_4^+ into soil solution
- N immobilization: Uptake of NO₃⁻ or NH₄⁺ from soil solution and incorporation into microbial tissue

N mineralization under lab conditions

10 weeks at 77 °F and optimal moisture content

N mineralization under lab conditions

Formation of soil organic matter

Delta

Excess water

Anaerobic

conditions

0 cm

10 cm

30 cm

48 cm

66 cm

97 cm

114 cm

BA

Bt1

Bt2

Plant available N in soil

Residual soil nitrate:

- Directly available form of N.
- Origin:
 - Mineralization of organic N in spring
 - Left over fertilizer N from previous crop

Potentially available N:

- Nitrogen mineralized during the season from soil organic matter and other sources
- Estimates based on:
 - Laboratory studies
 - Field trials

Field trials

- Established zero N fertilizer plots in commercial fields
- Collected pre-plant soil samples to 4 ft., analyzed for ammonium and nitrate
- Measured nitrate in irrigation water
- Collected post-harvest soil samples to 4 ft., analyzed for ammonium and nitrate
- Analyzed plant samples for total biomass, dry matter and total N
- Collected plant samples during the growing season and at harvest from fertilized plots

Calculating net N mineralization

Net N mineralization = N outputs - N inputs

Outputs:

- N in aboveground biomass
- Post-harvest residual nitrate in soil profile
- Leaching and gaseous losses (assumed to be zero)

Inputs:

- Pre-plant residual nitrate in soil profile
- N fertilizer (was zero at all sites)
- N in irrigation water
- Atmospheric N deposition

N mineralization in the top 2 feet of the profile

N mineralization during the corn growing season ranged from 130 to 490 lb/ac

Total available N (residual nitrate & N mineralization)

N accumulation in corn biomass

Total available N (residual nitrate & N mineralization)

Residual N at harvest

Biomass N: Fertilized vs. unfertilized

Adjusting N fertilization to crop fertilizer needs

- Split applications
- Analyze soil sample for nitrate-N before fertilizer applications
- We are currently working on site-specific estimates for N mineralization
- Establish zero or reduced N fertilizer strips to determine the crop response to N fertilizer

Conclusions

- Bulk density of Delta soils is low ⇒ affects conversion from ppm N to lb N/ac
- N mineralization is related to soil properties
- N in the aboveground biomass at harvest averaged 230 lb/ac
- Residual nitrate-N and N mineralization (available N) exceeded N uptake in some fields
- When available N was high, yield response to fertilizer was low

Acknowledgement

- Funding provided by CDFA-FREP
- Michelle Leinfelder-Miles
- Growers
- Suzette Turner, Makena Savidge, Ken Miller