



# Monitoring Western Grapeleaf Skeletonizer (WGLS) Harrisina brillians in Wine grape Vineyards Carmen Gispert

Area Viticulture Advisor Riverside, San Bernardino and San Diego Counties

University of California Cooperative Extension

cgispert@ucanr.edu

# Western Grapeleaf Skeletonizer Harrisina brillians Barnes & McDunnough

- Distributed through California, Arizona, New Mexico, Texas, Nevada, Utah, Colorado and Northern States of Mexico
- 1941- First found in California near San Diego
- 1961 Found in backyard grapes near Fresno

### Western Grapeleaf Skeletonizer Life stages







Pupae Larvae

# Life cycle - larvae

First instar





Second instar





Fifth instar

#### Fourth instar





Third instar

# Infected adults pass the virus to eggs





Infected eggs are scattered and fail to hatch









# Virus infection symptoms

- Abnormal growth
  - Discoloration
  - Larvae shrink and/or die
  - Hang onto leaf or fall to the ground
- Abnormal feeding



Early 1950's – A parasitic wasp and a parasitic fly were introduced and established in San Diego county



Tachinid fly, Ametadoria misella



Parasitic wasp, *Apanteles harrisinae* 







#### Damage:

- Voracious feeding by the larvae causes defoliation
- Larvae have poisonous spines that cause skin welts on field workers

Excessive defoliation causes crop sunburn





# IPM Approach

## Inspection

Identification and Evaluation of the problem

Assessment of management options

Needs to continually be reviewed and improved

# Rationale of the study

- WGLS monitoring utilizes Delta sticky traps with lures
- Insect counts are 7-10 days late, labor intensive, inaccurate and impracticable in population models
- Currently there is no communication mechanism to alert growers of the presence of WGLS in vineyards, or the timing to start a control program

# Rationale of the study cont.

- The purpose of insect trapping is monitoring pest populations to determine the time the use of control methods to optimize efficacy of control.
- A trap with an optical sensor was developed.
- An evaluation to compare detection accuracy with commercially available Delta traps was needed.
- A Flight Sensor trap system will provide "alerts" with real time information.

# Goal of the study:

- To develop a pest management decision tool utilizing Artificial Intelligence (AI) and Machine Learning (ML) combined with <u>real-time</u> insect data collection technology.
- Assemble a multidisciplinary team of experts in real-time insect data collection, Artificial Intelligence and Machine Learning, biostatistics, entomologists, pest control advisors, farm managers and winegrowers.



#### Western Grapeleaf Skeletonizer (WGLS) Trial

#### **Trial Description**

Paired comparison of 12 Delta sticky traps against FlightSensors baited with WGLS pheromone. FlightSensors were fitted with interior sticky cards to confirm insect.

Period of data collection 2022 and 2023

**Trial Location** Wine grape vineyards in Temecula, CA

#### **Cooperators**

Temecula and San Diego Winegrowers

#### **Additional Info**

UC IPM: https://ipm.ucanr.edu/agriculture/grape/western-grapeleaf-skeletonizer/







FlightSensor fitted with yellow sticky card



Look for infested leaves above the cordon zone









# Question

These are symptoms of skeletonizer infestation (mark all that apply)

- a. Defoliation
- b. Fruit sunburn
- c. Leaves with bumps
- d. Delayed budbreak









Roltsch, W. J., and M. A. Mayse. 1993. Simulation phenology model for the western grapeleaf skeletonizer (Lepidoptera: Zygaenidae): development and adult population validation. Environ. Entomol. 22: 577-586.

#### **Degree-days**

The total amount of heat required, between the lower and upper thresholds, for an organism to develop from one point to another in its life cycle is calculated in units called degree-days (°D).

#### **Developmental thresholds**

Degree-day accumulations required for each stage of development Location of study: California (laboratory and field studies)

**Biofix:** First male moth from overwintering pupa captured in pheromone traps

| Method of calculation: Cutoff method: |                  | Single Sine<br>Horizontal Cutoff |
|---------------------------------------|------------------|----------------------------------|
|                                       |                  |                                  |
| Lower:<br>Upper:                      | 48.2°F<br>82.8°F | (9.0°C)<br>(28.2°C)              |
| Host: Grapes                          | DD (°F)          | DD (°C)                          |
| Eggs:                                 | 261.0            | 145.0                            |
| Larvae (instars 1-5):                 | 693.0            | 385.0                            |
| Pupae:                                | 500.0            | 278.0                            |
| Generation time:                      | 1454.0           | 808.0                            |





# Control Action

# Biological

Chemical

Cultural

# From UC IPM website

| Insecticide common name | Trade name               | Acceptable for organic production |
|-------------------------|--------------------------|-----------------------------------|
| METHOXYFENOZIDE         | Intrepid                 |                                   |
| CHLORANTRANILIPROLE     | Altacor                  |                                   |
| SPINETORAM              | Delegate                 |                                   |
| SPINOSAD                | Entrust & Success        | Entrust*                          |
| CRYOLITE                | Kryocide                 |                                   |
| Bacillus thuringiensis* |                          | Bt*                               |
| ACETAMIPRID             | Assail                   |                                   |
| ABAMECTIN               | Agri-Mek SC              |                                   |
| IMIDACLOPRID            | Admire Pro Soil & Foliar |                                   |
| INDOXACARB              | Avaunt                   |                                   |

Success for thrips control at bloom Assail and Provado for leafhoppers and sharpshooters

#### Control of WGLS larvae with Reduced-risk insecticides\* trial

(David Haviland, Walter Bentley, Jennifer Hashim and Carmen Gispert

- Insecticides tested on small and large larvae:
  - Assail, Avaunt, Dipel\*\*, Intrepid, Provado, and Success.
- Assail, Provado and Sucess have a knock-down effect and provide excellent control regardless the size of the larvae.
  - \* Reduced-risk insecticides have a lower toxicity on non-target organisms (birds, fish, plants) and low potential for groundwater contamination.
  - \*\*Dipel: Biological insecticide that contains the *Bacillus thuringiensis* strain.

#### Conclusions from the insecticide trial

- There are no thresholds for this pest.
- The use of *Bacillus thuringiensis* (*B.t.*) needs to be timed to the presence of small larvae.
- The knock-down insecticides tested were highly effective against all sizes of WGLS larvae eliminating the need to time the control to small larvae.

# Question

The bacterium *Bacillus thuringiensis* (Bt) is used to control:

- a. Adults
- b. Pupae
- c. Larvae
- d. All of them

# Conclusions from the optical trap trial

- Remote detection with traps with optical sensors offers a promising approach to a more accurate and autonomous insect monitoring method.
- Real-time monitoring will help to improve monitoring and make better control decisions that will help to reduce the use of pesticides and labor.

#### Acknowledgements:

Project team Farm Sense Inc.

Leslie Hickle
Tracy Ellis
John Randazzo
Shailendra Singh
Cliff Kitayama

Temecula and San Diego Winegrowers

Vineyard managers
Christina Smith
Arturo Marquez

David Haviland
UCCE Farm Advisor
Kern County

