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Feeding the planet growing population

• Agricultural production should increase by 
>70% by 2050

• USA’s long-term sustainable agriculture 
goals

• Provide more profitable farm income
• Promote environmental stewardship 
• Enhance quality of life for farm families 

and rural communities

• Ongoing 4TH industrial revolution
Rapid expansion of development and 
availability of agricultural technologies such as 
robotics, computer science (artificial 
intelligence), and hardware and software
connected through the Internet of Things
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Within-field temporal stability of NDVI time series (2014 – 2019)

>Stable high areas: local NDVI-peak above 
average for all years, bottom 20th percentile of 
multi-year temporal variability

>Stable low areas: local NDVI-peak always 
below average, bottom 20th percentile of multi-
year temporal variability

Collaboration with Ahmed Eldawy’s Lab.
Big Raster and Vector Query Processing 
Electrical & Computer Engineering, UC Riverside
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Soil spatial variability drives most of yield spatial variability
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Soil maps are used as an input in 
decision support models
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Web Soil Survey (SSURGO) USDA-NRCS National Cooperative Soil Survey MAPS

• Web Soil Survey (SSURGO) from USDA-NRCS’s National 
Cooperative Soil Survey 
is an invaluable source of information 

• https://casoilresource.lawr.ucdavis.edu/gmap/
• Fairly accurate at broad spatial scales
• Often, not sufficiently accurate at the field scale 
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How are the SSURGO soil maps doing in the Salinas Valley?

CMD Mini-Explorer 6L – Electromagnetic Induction – soil apparent electrical conductivity 

Texture, Water Content,
Salinity, Gravel, ….
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• RS700 – Gamma Ray Spectrometer – Gamma Ray Total count, U, K, Th

Texture, clay 
mineralogy,  
(0 to 30~50cm) 
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• Soil sampling at multiple depths
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How are the SSURGO soil maps doing in the Salinas Valley?
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A look at USDA soil maps at UC Riverside

500 m

Average clay content (%) 0-1 
m

UC Riverside AES
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USDA Maps are not suitable for precision agriculture … but sensor derived maps are! 

Sandy Loam
Topsoil 68.8 cm 

Sand 22.1%
Clay 7.5%

AWC 0.10 cm/cm

Sandy Loam
Topsoil 20 cm 

Sand 68 %
Clay 12.5 %

AWC 0.13 cm/cm

Sand (%)

AWC (cm/cm)

ECa-derived soil mapsUSDA Soil Maps

Scudiero et al., 2024



What are high-resolution maps good for?
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Mapping soil spatial variability at the meter resolution
Bard Water District, Imperial County, CA Collaboration with Charles Sanchez, UofA, AI4SA Co-PI

We used on-the-go soil sensing to map sand content in 10 fields
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California Ag. Order 4.0 Nitrogen Removal Regulations 

• Current limit is 500 lb/acre of nitrogen after crop removal. 
• In 2051, maximum of 50 lb/acre of nitrogen after crop removal
• Is Precision Ag a viable tool to help farmers meeting these N reduction goals?

– 4R approach: Right source, Right rate,  Right time, Right place

• Soil-texture derived VARIABLE-RATE NITROGEN zones 
in the Bard Water District are showing high yield 
with a 20-30% N input reduction 
(Research with Charles Sanchez, UofA, AI4SA Co-PI)

Soil texture 
based zones

Zone N recommendations 
based on soil and plant tests

Pre-Planting and In-season 

Variable Rate 
Nutrient Management

OUTCOMES:
• Increase in farmer profit
• Reduced environmental impact



AI (derived) soil maps

CASE 1: you are a soil scientist surveying fields for your clients
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Workflow for automated sensor calibration and soil mapping
 Example for soil salinity mapping with ECa data

Guevara et al. In Preparation



AI (derived) soil maps

CASE 2: you want to use AI-generated maps for the entire state 
(or broader scales)
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Combining publicly available soil data with big data and AI

• USDA’a National Soil Information 
System (NASIS) database contains in 
situ observations made over the 
years by soil surveyors over the 
United States.

• Hundreds of thousands of soil 
measurements in the US
– Similar information globally

• AI uses remote sensing data, climate 
data ….  To predict spatial variability 
of soil properties: texture, SOC, …. 

Ramcharan et al 2019
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POLARIS Soil Properties: 30-m 
Probabilistic Maps of Soil Properties 
Over the Contiguous United States

Machine learning –based soil maps  (Duke University – AI4SA)

USDA 

Chaney et al. (2016). Geoderma
Chaney et al. (2019). Water Resources Research
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Do we need better soil maps?
• In many cases, yes. 

– Accurate high-resolution maps help quantifying spatial variability
• Helping answer questions: is a field sufficiently homogeneous or should I consider 

site-specific management of agronomic inputs?

• How do we make accurate soil maps at a single field?
– A combination of on-the-go soil sensors and soil laboratory analyses can be used to 

generate maps
• Soil sampling & laboratory analyses are very expensive

• How to produce inexpensive soil maps with AI?
– Leveraging field scale surveys over many fields and using limited soil sampling

• Once an AI model is calibrated the need for new soil sampling decreases 
substantially

– Work-in-progress: Using USDA point data and field scale surveys, AI can create 
accurate high-resolution accurate maps



Thanks for your attention!

Elia Scudiero,  Ph. D .
Associate  R esearch Agr on omist
UC Rivers ide,  Env ironmental  Sc iences
USDA-ARS,  U .S .  Sal in ity  Laboratory
elia.scudiero@ucr.edu

@EliaScudiero

Digital Agronomy Lab website

Funding sources and co-investigators

“Artificial Intelligence for Sustainable 
Water, Nutrient, Salinity, And Pest 
Management in The Western U.S.”
Elia Scudiero (PD); Hoori Ajami; 
Ray Anderson; Khaled Bali; Michael Cahn; Nate 
Chaney; Karletta Chief; Ahmed Eldawy; Andrew 
French; Raj Khosla; Milt McGiffen; Connie Nugent; 
Vagelis Papalexakis; Alexander Putman; Monique 
Rivera; Charles Sanchez; Kurt Schwabe; Todd 
Skaggs; George Vellidis (Co-PDs)

NIFA-AFRI Grant Number: 2020-69012-31914


