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Do we need better soil maps
for field-scale water and nutrient management?
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I- eeding the planet growing populatlon

« Agricultural production should increase by

>70% by 2050

Global crop value in US$ bn's

* USA’s long-term sustainable agriculture jjf;gg
goals o $1,800
« Provide more profitable farm income @ $1,600
* Promote environmental stewardship > 1,400
- Enhance quality of life for farm families zzgg
and rural communities '
« Ongoing 4™ industrial revolution

Rapid expansion of development and
availability of agricultural technologies such as
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Exhibit 9: Farming Tech is core to delivering a 70% increase in global crop production

robotics, computer science (artificial
intelligence), and hardware and software
connected through the Internet of Things

Source: Goldman Sachs Global Investment Research, Company Data.
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Wlthm-f' eld temporal stablllty of NDVI time series (2014 - 2019)

NDVI stability zones

< e s T - Derived from 2014 - 2019
5 Ln il Landsat 8 time series analysis

Unstable zone

- Stable low zone

Stable high zone

>Stable high areas: local NDVI-peak above
average for all years, bottom 20t percentile of
multi-year temporal variability

Alfalfa field in
>Stable low areas: local NDVI-peak always Imperial County, CA
below average, bottom 20t percentile of multi- -

year temporal variability
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Collaboration with Ahmed Eldawy’s Lab.
Big Raster and Vector Query Processing
Electrical & Computer Engineering, UC Riverside




I- Soil spatlal variability drives most of yleld spatlal varlablllty

Wheat yield, Mg ha

| ]1.02-2.12 [ 2.59 - 2.84
[ ]213-237 | 2.85-3.21

. 1233-258 |l 322-6.00 ¥

0 75150 300 m
T

Scudiero et al. (2016)

Bare 50|I reflectance map
(Good predictor for texture)

Precision Agriculture
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Soil maps are used as an input in
decision support models
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Web Soil Survey (SSURGO) USDA-NRCS National Cooperative Soil Survey MAPS

SoilWeb

: .  weru v |3 S
* Web Soil Survey (SSURGO) from USDA-NRCS's National N Y5 O
Cooperative Soil Survey : WU P
is an invaluable source of information
* https://casoilresource.lawr.ucdavis.edu/gmap/
 Fairly accurate at broad spatial scales

- Often, not sufficiently accurate at the field scale
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I- ow are the SSURGO soil maps domg In the Salmas Valley’

Soil Salinity (EC,) (dS m™)
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r RS700 - Gamma Ray Spectrometer - Gamma Ray Total count, U, K, Th

Texture, clay
mineralogy,
(0 to 30~50cm)
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Gamma-ray map
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« Soil sampling at multiple depths
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How are the SSURGO sml maps domg In the Salinas Valley’ |

Sand Comparison (Lab vs. SURGO) Clay Comparison (Lab vs. SURGO)
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A look at USDA sml maps at UC Rlver5|de o

1 Average clay content (%) 0-1
A m

i 3 <= 12.5

il [ ]>12.5and <= 13.4
(1> 13.4 and <= 14.7

M 1> 14.7 and <= 20.8

| Il > 20.8 and <= 23.2
fl (1 Not rated or not availgy
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r USDA Maps are not suitable for precision agriculture ... but sensor derived maps are!
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USDA Soil Maps
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EC_,-derived soil maps
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What are high-resolution maps good for?
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Mapping soil spatial varlablllty at the meter resolutlon Q’?

Bard Water District, Imperial County, CA Collaboration with Charles Sanchez, UofA, Al4SA Co-PI
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We used on-the-go soil sensmg to map sand content in 10 fields
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California Ag Order 4.0 Nltrogen Removal Regulatlons Q’? -I

 Current limit is 500 lb/acre of nitrogen after crop removal.

* In 2051, maximum of 50 lb/acre of nitrogen after crop removal

* Is Precision Ag a viable tool to help farmers meeting these N reduction goals?
— 4R approach: Right source, Right rate, Right time, Right place

e Soil-texture derived VARIABLE-RATE NITROGEN zones

in the Bard Water District are showing high yield OUTCOMES: .

with a 20-30% N input reduction * Increase in farmer profit

(Research with Charles Sanchez, UofA, Al4SA Co-PI) * Reduced environmental impact
Soil texture Zone N recommendations Variable Rate

based zones based on soil and plant tests Nutrient Management

Application functions in Yuma vegetable production




Al (derived) soil maps
CASE 1: you are a soil scientist surveying fields for your clients
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Workflow for automated sensor calibration and soil mapping
- Example for soil salinity mapping with ECa data
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Historic datasets

-Target variable |:| Methodological stage Accuracy assessment
‘Geospatial EMI D Main covariates |:| Methodological component
(ECa)
|:| Secondary covariates |:| Main outputs
/ F
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harmonization exploration (cross validation) repeated learners
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Al (derived) soil maps

i CASE 2: you want to use Al-generated maps for the entire state
I (or broader scales)
i
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Combmmg publlcly avallable soil data W|th blg data and AI

« USDA’a National Soil Information
System (NASIS) database contains in NASIS polos (N327,001)
situ observations made over the g
years by soil surveyors over the
United States.

measurements in the US

! « Hundreds of thousands of soil
= —Similar information globally

* Al uses remote sensing data, climate _
data .... To predict spatial variability Ramcharan et al 2019
of soil properties: texture, SOC, ....
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Machine learnmg -based sml maps (Duke Umver5|ty — Al4SA)

POLARIS Soil Properties: 30-m Chaney et al. (2016). Geoderma
PrObabi“StiC Maps Of SOII. PrOpertieS Chaney et al. (2019). Water Resources Research
Over the Contiguous United States

Towards POLARIS v2: Leveraging Hierarchical Soil Classification and Regression Kriging to
Assemble New Soil Properties Maps over California and Beyond

Authors  Chengcheng Xu, Elia Scudiero, Nathaniel W Chaney
Publication date 2023/12

Journal  AGU Fall Meeting Abstracts
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Do we need better soil maps?

* In many cases, yes.
— Accurate high-resolution maps help quantifying spatial variability
* Helping answer questions: is a field sufficiently homogeneous or should | consider
site-specific management of agronomic inputs?
« How do we make accurate soil maps at a single field?

— A combination of on-the-go soil sensors and soil laboratory analyses can be used to i
generate maps

* Soil sampling & laboratory analyses are very expensive

« How to produce inexpensive soil maps with Al?
— Leveraging field scale surveys over many fields and using limited soil sampling

« Once an Al model is calibrated the need for new soil sampling decreases
substantially

— Work-in-progress: Using USDA point data and field scale surveys, Al can create 3
accurate high-resolution accurate maps ﬁiiﬁ"
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Thanks for your attention! .-—"Fundmg sources and co- mvestlgators

“Artificial Intelligence for Sustainable ,,,W]
Water, Nutrient, Salinity, And Pest asaNIFA
. Management in The Western U.S.” '17

' Elia Scudiero (PD); Hoori Ajami;

. Ray Anderson; Khaled Bali; Michael Cahn; Nate

~ Chaney; Karletta Chief; Ahmed Eldawy; Andrew

= | French; Raj Khosla; Milt McGiffen; Connie Nugent;
5 Vagelis Papalexakis; Alexander Putman; Monique
& Rivera; Charles Sanchez; Kurt Schwabe; Todd

= 1 Skaggs; George Vellidis (Co-PDs)

s NIFA-AFRI Grant Number: 2020-69012-31914
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Elia Scudiero, Ph.D.

Associate Research Agronomist

UC Riverside, Environmental Sciences
USDA-ARS, U.S. Salinity Laboratory
elia.scudiero@ucr.edu

o @EliaScudiero E]

Digital Agronomy Lab website g




